
データプラットフォームチームの野本です。機械学習基盤の構築やその周辺アプリケーションの実装を行っています。以前は DOOR 賃貸の開発運用をしていてこんなことなどしてました。 機械学習システム運用の課題 リブセンスでは 2014 年ごろから機械学習システムの開発導入を行っており以降様々な機械学習システムを各サービスに導入してきました。また自社でのデータ分析基盤の運用も行うようになってから機械学習システムの開発の幅が広がり導入の要望も次第に増えてきました。(参考:リブセンスのデータ専門組織のこれまでとこれから) 当初は機械学習システムに対する運用知見などが少なかったため、専用のインフラというものは保持せず各サービスのインフラに相乗りし、サービスのアプリケーションと密に連携し機械学習システムを実装運用することが多かったです。各サービスは元々オンプレミスで運用されていたものが多かったのですが、現
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 📜 要約 コンテナー管理ソフトウェアのDockerを利用することで、データ分析の場面で利用頻度の高いRおよびPythonの分析環境として実行することが出来るRStudio Server、Jupyter、Beaker Notebookを容易に構築可能になる。Dockerを使うことの利点として、複数人でのデータ分析や将来の利用面においてデータ分析結果の再現性を高められると考えられる。 🍵 前置き〜データ分析者が直面する再現性への挑戦 データ分析の結果が、自分以外では再現できない、同じデータを使っているのにナンデ!?ということが時々ありま
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く