タグ

search-algorithmとmetaheuristicに関するnabinnoのブックマーク (2)

  • 局所探索法 - Wikipedia

    局所探索法(きょくしょたんさくほう、英: local search)や逐次改善法(ちくじかいぜんほう、英: iterative improvement)や近傍探索法(きんぼうたんさくほう)は、探索アルゴリズムの一種である。 局所探索法とは近似アルゴリズムの中でも最も単純なアルゴリズムの枠組みの一つである。広義には後述する手法の枠組みを持つアルゴリズムの総称として使われており、狭義には山登り法の意味で使われている。今日のメタヒューリスティクスの多くの手法がこの枠組みを使用している。 「局所探索法」という言葉は主に探索アルゴリズムに対しての言葉であり、数値解析の分野に於いては「反復法」という言葉が用いられる。両者の違いとしては反復法は対象となる関数の連続性や1階微分方程式などが解っていることが前提の場合が多く、また求める解も最適解を要求されることが多いのに対し、局所探索法では離散的な関数や関数

  • メタヒューリスティクス - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "メタヒューリスティクス" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2023年8月) メタヒューリスティクスとは、組合せ最適化問題のアルゴリズムにおいて、特定の計算問題に依存しないヒューリスティクスのことである。 近年では、上記の定義から拡張され、特定の問題に依存しない、汎用性の高いヒューリスティクス全般を指すこともある。そのため、組合せ最適化問題のアルゴリズムに限らず、連続最適化問題に対するアルゴリズムも含む解釈も存在する。 通常ある問題に対しての「解法」が存在するとき、その解法が適用できる範囲はその問題に対してのみである。 と

  • 1