This paper introduces the DRAW neural network architecture for image generation: http://arxiv.org/abs/1502.04623
We present a simple regularization technique for Recurrent Neural Networks (RNNs) with Long Short-Term Memory (LSTM) units. Dropout, the most successful technique for regularizing neural networks, does not work well with RNNs and LSTMs. In this paper, we show how to correctly apply dropout to LSTMs, and show that it substantially reduces overfitting on a variety of tasks. These tasks include langu
min-char-rnn.py & 쪪 `p 窪 """ Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy) BSD License """ import numpy as np # data I/O data = open('input.txt', 'r').read() # should be simple plain text file chars = list(set(data)) data_size, vocab_size = len(data), len(chars) print 'data has %d characters, %d unique.' % (data_size, vocab_size) char_to_ix = { ch:i for i,ch in
Deep learning has gained much success in sentence-level relation classification. For example, convolutional neural networks (CNN) have delivered competitive performance without much effort on feature engineering as the conventional pattern-based methods. Thus a lot of works have been produced based on CNN structures. However, a key issue that has not been well addressed by the CNN-based method is
We have recently shown that deep Long Short-Term Memory (LSTM) recurrent neural networks (RNNs) outperform feed forward deep neural networks (DNNs) as acoustic models for speech recognition. More recently, we have shown that the performance of sequence trained context dependent (CD) hidden Markov model (HMM) acoustic models using such LSTM RNNs can be equaled by sequence trained phone models initi
Recurrent Neural Networks (RNNs) have long been recognized for their potential to model complex time series. However, it remains to be determined what optimization techniques and recurrent architectures can be used to best realize this potential. The experiments presented take a deep look into Hessian free optimization, a powerful second order optimization method that has shown promising results,
Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany Neural plasticity plays an important role in learning and memory. Reward-modulation of plasticity offers an explanation for the ability of the brain to adapt its neural activity to achieve a rewarded goal. Here, we define a neural network model that learns through the interaction of Intrinsic Plasticity (IP) and reward-mod
In recent years significant progress has been made in successfully training recurrent neural networks (RNNs) on sequence learning problems involving long range temporal dependencies. The progress has been made on three fronts: (a) Algorithmic improvements involving sophisticated optimization techniques, (b) network design involving complex hidden layer nodes and specialized recurrent layer connect
We propose BlackOut, an approximation algorithm to efficiently train massive recurrent neural network language models (RNNLMs) with million word vocabularies. BlackOut is motivated by using a discriminative loss, and we describe a new sampling strategy which significantly reduces computation while improving stability, sample efficiency, and rate of convergence. One way to understand BlackOut is to
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, pages 655–665, Baltimore, Maryland, USA, June 23-25 2014. c 2014 Association for Computational Linguistics A Convolutional Neural Network for Modelling Sentences Nal Kalchbrenner Edward Grefenstette {nal.kalchbrenner, edward.grefenstette, phil.blunsom}@cs.ox.ac.uk Department of Computer Science University of
Capturing the compositional process which maps the meaning of words to that of documents is a central challenge for researchers in Natural Language Processing and Information Retrieval. We introduce a model that is able to represent the meaning of documents by embedding them in a low dimensional vector space, while preserving distinctions of word and sentence order crucial for capturing nuanced se
The recently proposed neural network joint model (NNJM) (Devlin et al., 2014) augments the n-gram target language model with a heuristically chosen source context window, achieving state-of-the-art performance in SMT. In this paper, we give a more systematic treatment by summarizing the relevant source information through a convolutional architecture guided by the target information. With differen
We present a neural network architecture and training method designed to enable very rapid training and low implementation complexity. Due to its training speed and very few tunable parameters, the method has strong potential for applications requiring frequent retraining or online training. The approach is characterized by (a) convolutional filters based on biologically inspired visual processing
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く