さて、前回は交差検証の説明で終わってしまいましたが、今回はちゃんと SVM のチューニングの話をします。 チューニングの手順としては、 グリッドサーチで大雑把に検索する。 最適なパラメータがありそうなところを絞って再びグリッドサーチを行う。 という2段階のグリッドサーチを行います。 1段階目:グリッドサーチで大雑把に検索する SVM のチューニングは tune.svm() という関数を用いて行います。 チューニングのやり方は、単純にグリッドサーチを行っているだけです。 パラメータの値をいろいろ変えてみて、正答率の一番いい値をベストパラメータとして出力します。 プログラムは下記のようになります。 gammaRange = 10^(-5:5) costRange = 10^(-2:2) t <- tune.svm(Species ~ ., data = iris, gamma=gammaRan