タグ

関連タグで絞り込む (2)

タグの絞り込みを解除

機械学習とベイズに関するpetite_blueのブックマーク (1)

  • 広く使える情報量規準(WAIC)

    このページをご覧いただき、ありがとうございます。 ここでは、情報量規準 WAIC を紹介しています。 ベイズ推測のための情報量規準(WAIC)が導出されました。 WAIC は(真の分布、確率モデル、事前分布)がどのような場合でも使う ことができます。他の規準と異なり理論的な基盤を持っています。 (0) モデル選択やハイパーパラメータの最適化に使えます。 (1) 漸近的に汎化損失と同じ平均値と同じ分散を持ちます。 (2) WAIC は簡単に計算できます。 (3) 真の分布が確率モデルで実現可能でなくても使えます。事前分布が真の事前分布でなくても使えます。 (4) 平均対数損失を最小にするパラメータがユニークでなくても使えます。 平均対数損失を最小にするパラメータが特異点を含む解析的集合であっても 使えます(注1)。 (5) フィッシャー情報行列が正則でなくても使えます。 (6) 事後分布が正

  • 1