2020.11.14 畳み込みニューラルネットワークは物体認識(物体分類)の分野で大きな成功を納めているものの、各層のパラメーター同士の繋がりが複雑で、解釈性に欠けている。畳み込みニューラルネットワークが、写真のどこを見て、何をもって物体認識を行っているのを解明することで、畳み込みニューラルネットワークのさらなる改良に繋がるだけでなく、ユーザーが安心して使えるものになる。畳み込みニューラルネットワークの各層を可視化して解釈できるようにする研究が多く行われている。そのなかで、比較的による知られているのが Grad-CAM である。Grad-CAM を理解するには、global average pooling (GAP) および class activation map (CAM) についても理解する必要がある。 global average pooling (GAP) 一般的な畳み込みニュー