今までも、いくつか拡張機能は使っていたものの、大部分は使わずに過ごしていたため、食わず嫌いはいけないな・・と思いドキュメント読みながら使ってみてまとめます。 まえおき 拡張機能(nbextensions)自体や、過去の記事で触れたHinterlandやTable of Contents (2)などはそちらの記事(Jupyter 知っておくと少し便利なTIPS集)をご確認ください。 結構抄訳などしています。(浅く広く。詳細はドキュメントに任せるとして、こんな拡張機能あるのか、程度にご使用ください) nbextensionsを入れたときに最初から入っている拡張機能を対象とします。 全部といっても、nbextensionsの設定画面を表示するための拡張機能だったり、基本的にデフォルトで有効で、且つ変えることがほぼなさそうなものは割愛します。 環境は「Python 3.6.5 :: Anacond
今まで仕事で使ってきた、メジャーなものからマイナーなものまで含めたJupyter NotebooksのTIPS集です。 入力補完 とりあえずこれが無いと生きていけません。 Nbextensions(Jupyterの拡張機能)自体が未設定であれば、一旦そちらをインストールして、その後にHinterlandという機能にチェックを入れると有効化されます。 AnacondaのJupyter notebookでnbextensionsを使う ※Nbextensionsインストール後、Jupyterのファイルリスト的な画面で、タブで「Nbextensions」という選択肢が追加されます。 Azure Notebooksなどだと、最初からインストール不要で選択できるようになっています。 Google Colaboratoryなどでは、そういった設定ができるのかまだよくわかっていません。(ご存じの方コメン
Notebookの機能にターミナル、ファイルブラウザなどを統合 そのJupyter Notebookのメジャーバージョンアップ版として開発されているJupyterLabは、Notebookの機能だけでなく、ターミナル画面の機能、ファイルブラウザ、テキストエディタなどの機能が統合され、それらをタブによって同時にいくつも開くことができるようになり、統合開発環境と呼ぶべきツールへと進化しました。 拡張機能によって機能をあとから追加することも可能(JupyterLabの基本機能であるNotebookやファイルブラウザ、ターミナルも拡張機能として実装されていると説明されています)。すでに、JSONやCSVの読み込み機能、JSONフォーマットで地図情報を記述するgeoJSONによる地図表示などが用意されています。 JupyterLabは今年後半に正式版となるバージョン1.0がリリース予定。また、現バー
あるいは、論文 "Best Practices for Scientific Computing" および "Good Enough Practices in Scientific Computing" について。 TL;DR 標題の件について、未だに答えは見えていないのだけど、自分の現状と他の人の例を文字で残しておく。 こういう話で「あーその手があったかー!」と知ったときの興奮はすごいので、みなさんもっとオープンにいきましょう。 大切なのは、ソフトウェア開発と同じ要領でデータサイエンスのプロジェクトを捉えて、分析と言う名の“開発”を行うつもりでディレクトリを掘ること。 必要なものリスト ナウいデータサイエンス/機械学習プロジェクトの中には(経験上、ぱっと思い浮かぶだけでも)次のようなファイル群があって、僕たちはそれらを良い感じに管理したい。 ソースコード 役割がいろいろある: 前処理(こ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く