Help us understand the problem. What are the problem?

Totally confused by all the tools for managing dependencies? Pip, venv, Docker, conda, virtualenvwrapper, pipenv, … Which one should you use? Why do we even have all these different tools? Can they work together? No wonder. The world of Python dependency management is a mess, but once you understand the tools and why they exist, it’s going to be easier to choose the one you want and deal with the
Even if you write clear and readable code, even if you cover your code with tests, even if you are very experienced developer, weird bugs will inevitably appear and you will need to debug them in some way. Lots of people resort to just using bunch of print statements to see what's happening in their code. This approach is far from ideal and there are much better ways to find out what's wrong with
この記事は Python Advent Calendar 2019 の 19 日目の記事です。 🐍 あらすじ Python のパッケージ管理。特にここ数年で新しいツールが多く出たこともあり、一体何を使うべきなのか、少し調べただけでは分からないと思います。本記事では、新しめの管理ツールを独断と偏見で比較します。著者は Poetry 信者なのでバイアスが掛かっているので悪しからず。 本記事で書いていること Pipenv、Poetry、Pyflow の違いと使い方 本記事で書いていないこと Pyenv、Venv、Virtualenv などの既存ツールの説明 著者の環境は以下の通り。 Ubuntu 18.04 Python 3.8.0 Pipenv 2018.11.26 Poetry 1.0.0 Pyflow 0.2.1 特に Poetry と Pyflow は開発途中なので、本記事の内容と違う
はじめに インストールすればすぐに書けて動かせるのが魅力のPythonですが、 実際に業務などでキチンと書こうと思ったら Pythonのバージョン管理ツール パッケージマネージャー エディター(IDE) リンター フォーマッター 型チェッカー くらいは最低限用意する必要があります。 しかしこの界隈、怒涛の勢いで日々新しいものがリリースされていて一概に「これがベストプラクティス」を提示するのが難しいんですよね。そこで今回は上記それぞれのツールについて「こんなものがあるよ」というのをご紹介したいと思います。 TLDR バージョン/パッケージ管理はpyenv + Pipenvがスタンダードだった時代は終わった VS CodeかVimを使うなら型解析にPyrightを導入するとよい テンプレートを用意しました 1. バージョン/パッケージマネージャー プロジェクトごとに異なるPythonのバージョ
ABEJA で Research Engineer をやっている中川です.普段は論文読んだり,機械学習モデルを実装したり,インフラを構築したりしています.今回のブログでは,Insight for Retail の一機能として提供しているリピータ分析に用いる特徴量DBの改善に向けた言語選定について紹介します. ※ たくさんの方々からのコメントありがとうございます.いただいた観点をベースに「2020-04-14 追記」以下に実験を追加しました. モチベーション リピート分析では,任意の特徴量をクエリに最も類似した特徴量を数100msec以内に検索する必要があり,一般的なデータベースでは実現することが難しいという課題がありました.そこで,われわれは python で独自のインメモリデータベースを実装し運用してきました.このデータベースがサービスの成長に合わせて限界を迎えつつあるので,アルゴリズム
bobp-python.md The Best of the Best Practices (BOBP) Guide for Python A "Best of the Best Practices" (BOBP) guide to developing in Python. In General Values "Build tools for others that you want to be built for you." - Kenneth Reitz "Simplicity is alway better than functionality." - Pieter Hintjens "Fit the 90% use-case. Ignore the nay sayers." - Kenneth Reitz "Beautiful is better than ugly." - PE
こんにちは。 現役エンジニアの”はやぶさ”@Cpp_Learningです。仕事でもプライベートでも機械学習で色々やってます。 今回は時系列データの前処理(ラグ特徴量)について勉強したので、備忘録も兼ねて本記事を書きます。 時系列データとは 時系列について、Wikipediaでは以下のように説明しています。 時系列(じけいれつ、英: time series)とは、ある現象の時間的な変化を、連続的に(または一定間隔をおいて不連続に)観測して得られた値の系列(一連の値)のこと。 引用元:Wikipedia より直観的な説明をすると、データを可視化したとき横軸が時間なら、そのデータは時系列データといえます。 上図の縦軸が加速度センサの計測値、横軸が時間です。つまり、これも時系列データです。
2019年9月16、17日、日本最大のPythonの祭典である「PyCon JP 2019」が開催されました。「Python New Era」をキャッチコピーに、日本だけでなく世界各地からPythonエンジニアたちが一堂に会し、さまざまな知見を共有します。プレゼンテーション「Python開発を円滑に進めるためのツール設定」に登壇したのは、Atsushi Odagiri氏。講演資料はこちら 開発を効率的に進めるためのツール設定Atsushi Odagiri氏:この時間はビギナーセッションで、内容はPythonでの開発を効率的に進めるためのツール設定です。 まず「ツール設定」という趣旨の説明と、あとは今日説明するツールがflake8、black、mypy、pytest、toxなどがあります。そしてそれぞれを使うためにエディタ設定をするという流れになっております。 先に自己紹介させていただきます
プログラミング演習の教材は、プログラミングの初学者を対象にPythonを用いたプログラミングを演習方式で学ぶもので、京都大学学術情報リポジトリ(KURENAI)で公開されている。本編のほか、横道にそれる話題をまとめたコラム編の2つの教材がある。著者は国際高等教育院 教授の喜多一氏。 本教材は、2018年度に全学共通科目として実施された授業を元に構成されたもので、到達目標としては以下の3つを挙げている。 Pythonによるプログラムの実行についての基本操作ができるようになる。 Pythonプログラムを構成する基本的要素の機能と書式について説明し、例題を用いて実行例を構成できるようになる。 Pythonを用いて簡単なプログラムを自ら設計、実装、テストできるようになる。 著者は、本教材のまえがきにおいて、多くの解説書がプログラミング言語の紹介に終始しがちななか、Pythonというプログラミング言
There were several moments over the last few weeks when I heard people discuss differences between Python lists and dicts and one of the first ones mentioned was that lists are ordered and dicts are not. Well, not anymore. Quoting the docs referenced above: Changed in version 3.7: Dictionary order is guaranteed to be insertion order. This behavior was an implementation detail of CPython from 3.6.
web-servers.md Each of these commands will run an ad hoc http static server in your current (or specified) directory, available at http://localhost:8000. Use this power wisely. Discussion on reddit. Python 2.x $ python -m SimpleHTTPServer 8000 Python 3.x $ python -m http.server 8000 Twisted (Python) $ twistd -n web -p 8000 --path . Or: $ python -c 'from twisted.web.server import Site; from twisted
目次 概要 動作環境 紹介するPythonライブラリ flake8 pyformat isort mypy bpython ipdb 最後に 概要 仕事でよくつかうパッケージからプライベートで開発するときに、必ずインストールしているパッケージをまとめて紹介してみた。 データサイエンス系の人はJupyterを使うと思うのでWeb開発向きだと思います。 DjangoなどWebフレームワークを使うときは便利な専用のパッケージもありますが本記事には記載してないです。 パッケージ管理はPipenvやpoetryなど有名なものがあるがこの記事では書いてないです。 動作環境 筆者の動作環境。 環境に依存したパッケージはないはずだが念の為。 MacOS Python 3.8.0 anyenv 1.1.1 pyenv 1.2.15-1-g49bf5952 紹介するPythonパッケージ flake8
どうも、DA事業本部の大澤です。 Visual Studio CodeのPython拡張機能のJupyter Notebook用エディタを触ってみました。Jupyter Notebookと似たインターフェイスでスクリプトが実行でき、エディタのインテリセンスのサポートも受けられて便利そうだったので、今回はその内容をご紹介します。 Working with Jupyter Notebooks in Visual Studio Code やってみる Python拡張機能を有効にする Jupyter Notebookをネイティブサポートするエディタを利用するにはPython拡張機能を有効化する必要があります。有効化してなければマーケットプレイスから検索し、有効化しましょう。 Python - Visual Studio Marketplace Python の環境を選択する コマンドパレットからP
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く