TensorFlowのチュートリアル(Deep MNIST for Experts) http://www.tensorflow.org/tutorials/mnist/pros/index.html#deep-mnist-for-experts の翻訳です。 翻訳の誤りなどあればご指摘お待ちしております。 TensorFlowは大規模な数値計算を行うための強力なライブラリです。TensorFlowが優れているタスクの1つは、ディープ・ニューラルネットワークを実装し、訓練することです。このチュートリアルでは、深い畳み込みMNIST分類器を構築しながら、TensorFlowモデルの基本的なビルディング・ブロックを学びます。 このチュートリアルは、ニューラルネットワークとMNISTデータセットに精通していることを前提とします。それらのバックグラウンドを持っていない場合は、初心者のためのチュート
ついにガロアが死んだ年齢を超えてしまったことに気がつき、自分がまだ何も成し遂げていないことを悲しく思う今日このごろです。 さて、今日はGoogleが出した機械学習ライブラリのTensorFlowの使い方について軽く説明しつつ、ゆるゆりの制作会社の識別を行おうと思います。 TensorFlowとは TensorFlowはGoogleが11/9に公開したApache 2.0ライセンスで使える機械学習ライブラリです。Googleは様々なところでプロダクトに機械学習を活用していますが、TensorFlowは実際にGoogle内部の研究で使われているそうです(TensorFlow: Google 最新の機械学習ライブラリをオープンソース公開 - Google Developer Japan Blog)。 Googleのネームバリューは恐ろしいもので、GitHubのStar数はすでにChainerやC
平田です。TensorFlowという機械学習ライブラリが流行っているようなので、とりあえず触ってみました。 ということで、まずはHello worldと、その解説を行っていきたいと思います。 セットアップ & Hello world まずは、Tensorflowをローカル上にインストールしていきます。今回はOSX上に環境を作っていきます。 はじめにvirtualenvを利用して、tensorflow用の環境を作成します。 tensorflowは今のところpython 2.7上でのみ動くようなので、これに揃えて環境を作成していきます。 $ # python バージョン確認 $ python —version Python 2.7.10 $ # virtualenvのインストール $ easy_install pip $ pip install virtualenv $ # virtualen
import tensorflow as tf input = [ [1., 0., 0.], [0., 1., 0.], [0., 0., 1.] ] winning_hands = [ [0., 1., 0.], [0., 0., 1.], [1., 0., 0.] ] x = tf.placeholder("float", [None, 3]) W = tf.Variable(tf.zeros([3, 3])) b = tf.Variable(tf.zeros([3])) y = tf.nn.softmax(tf.matmul(x, W) + b) y_ = tf.placeholder("float", [None, 3]) cross_entropy = -tf.reduce_sum(y_ * tf.log(y)) train_step = tf.train.GradientDe
TensorFlowとは2015/11/9にオープンソース化されたGoogleの機械学習ライブラリです。この記事ではディープラーニングと言われる多層構造のニューラルネットワークをTensorFlowを利用して構築しています。 TensorFlowはPythonから操作できますがバックエンドではC++で高速に計算しています。macのPython2.7系環境でTensorFlowの上級者用チュートリアルを行い、手書き認識率99.2%の多層構造の畳み込みニューラルネットワークモデルの分類器を構築したときの作業メモです。特別な設定なしにCPU使用率270%メモリ600MByteとちゃんと並列計算してくれました。MNISTランキングを見ると認識率99.2%は上位のモデルとなるようです。 TensorFlowチュートリアル TensorFlowの初心者用と上級者用チュートリアル2つに取り組んでみました
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く