タグ

関連タグで絞り込む (1)

タグの絞り込みを解除

algorithmとmathに関するprajnaのブックマーク (2)

  • 素数判定 - あどけない話

    要約:素数判定に使われるミラーラビン法を解説しながら、Haskell で実装してみる。 フェルマーテスト 大きな数を確実に素数だと判定するには、大変時間がかかるので、実用的には「ほぼ素数だ」と確率的に判定する。確率的な素数判定の代表格がフェルマーテストである。 フェルマーテストには、以下に示すフェルマーの小定理を利用する。 a^p ≡ a (mod p) a は任意の整数。p は素数である。法 p の下で a を p 乗したものは、a と合同であると言う意味だ。a には制限はないが、特に a を p より小さい整数、0 ≦ a ≦ p - 1 とすれば、a を p 乗して、p で割ると a に戻るとも解釈できる。 最初に見たときは、だからどうしたと思われるかもしれない。しかし、有名なフェルマーの大定理が実用上何の役にも立たないのに対し、フェルマーの小定理はいろんな場面で活躍する。 実際に計

    素数判定 - あどけない話
  • 一番右端の立っているビット位置を求める「ものすごい」コード - 当面C#と.NETな記録

    一番右端の立っているビット位置(RightMostBit)を求めるコードで速いのないかなーと探していたら、ものっっっすごいコードに出会ってしまったのでご紹介。2ch のビット演算スレで 32bit 値のコードに出会って衝撃を受けて、その後 64bit 値版のヒントを見つけたのでコードを書いてみました。 この問題は ハッカーのたのしみ―物のプログラマはいかにして問題を解くか (Google book search で原著 Hacker's delight が読めたのでそれで済ませた) で number of trailing zeros (ntz) として紹介されています。bit で考えたときに右側に 0 がいくつあるかを数えるもの。1 だと 0、2 だと 1、0x80 なら 7、12 なら 2 といったぐあい。0 のときに表題どおりの問題として考えるといくつを返すの?ってことになるので、

    一番右端の立っているビット位置を求める「ものすごい」コード - 当面C#と.NETな記録
  • 1