1.はじめに 今までのFaceSwapは、個別に学習プロセスが必要なため処理に時間がかかるのが難点でした。今回ご紹介するのは、個別の学習プロセス無しでFaceSwapを実現するSberSwapという技術です。 2.SberSwapとは? 下記の図は、SberSwapのモデル図でAEI-Netと呼ばれており、3つの部分で構成されています。 1つ目がIdentity Encoderで、画像XsからベクトルZidを求めます。2つ目がMulti-level Attributes Encoderdで、U-Netと同様な構造を持ち画像Xtから特徴Zattを取り出します。そして、3つ目がAAD Generatorで、これらの情報から目的とする画像を生成します。 3.コード コードはGoogle Colabで動かす形にしてGithubに上げてありますので、それに沿って説明して行きます。自分で動かしてみたい