並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 12 件 / 12件

新着順 人気順

Kerasの検索結果1 - 12 件 / 12件

  • ディープラーニング実践入門 〜 Kerasライブラリで画像認識をはじめよう! - エンジニアHub|若手Webエンジニアのキャリアを考える!

    ディープラーニング実践入門 ~ Kerasライブラリで画像認識をはじめよう! ディープラーニング(深層学習)に興味あるけど「なかなか時間がなくて」という方のために、コードを動かしながら、さくっと試して感触をつかんでもらえるように、解説します。 はじめまして。宮本優一と申します。 最近なにかと話題の多いディープラーニング(深層学習、deep learning)。エンジニアHubの読者の方でも、興味ある人は多いのではないでしょうか。 しかし、ディープラーニングについて周りのエンジニアに聞いてみると、 「なんか難しそう」 「なかなか時間がなくて、どこから始めれば良いかも分からない」 「一回試してみたんだけど、初心者向けチュートリアル(MNISTなど)を動かして挫折しちゃったんだよね」 という声が聞こえてきます。 そこで! この記事では、そうした方を対象に、ディープラーニングをさくっと試して感触を

      ディープラーニング実践入門 〜 Kerasライブラリで画像認識をはじめよう! - エンジニアHub|若手Webエンジニアのキャリアを考える!
    • PythonとKerasを使ってAlphaZero AIを自作する | POSTD

      自己対戦と深層学習でマシンにコネクトフォー(Connect4:四目並べ)の戦略を学習させましょう。 この記事では次の3つの話をします。 AlphaZeroが人工知能(AI)への大きなステップである2つの理由 AlphaZeroの方法論のレプリカを 作って コネクト4のゲームをプレイさせる方法 そのレプリカを改良して他のゲームをプラグインする方法 AlphaGo→AlphaGo Zero→AlphaZero 2016年3月、DeepmindのAlphaGo(アルファ碁)が、囲碁の18回の世界王者、李世乭(イー・セドル)との五番勝負で、2億人の見守る中、4-1で勝利しました。機械が超人的な囲碁の技を学習したのです。不可能だとか、少なくとも10年間は達成できないと思われていた偉業です。 AlphaGo 対 李世乭の第3局 このことだけでも驚くべき功績ですが、DeepMindは、2017年10月、

        PythonとKerasを使ってAlphaZero AIを自作する | POSTD
      • 【Day-17】DeepLearning系ライブラリ、『Keras』の使い方まとめ(2.x対応版) - プロクラシスト

        【最終更新 : 2017.12.17】 ※以前書いた記事がObsoleteになったため、2.xできちんと動くように書き直しました。 データ分析ガチ勉強アドベントカレンダー 17日目。 16日目に、1からニューラルネットを書きました。 それはそれでデータの流れだとか、活性化関数の働きだとか得るものは多かったのですが、Kerasと言うものを使ってみて、何て素晴らしいんだと感動してしまいました 今まで苦労して数十行書いていたものが、わずか3行で書ける! 正直、スクラッチで書く意味って、理解にはいいけど研究や分析には必要あんまないんですよね。車輪の再発明になるし。 と言うわけで、使えるものはどんどん使っていこうスタンスで、今日はKerasの紹介です! Tutorial+気になった引数を掘り下げて補足のような感じで書いています。 ちなみに、各部のコード以下をつなぎ合わせるとmnistの分類器が動くよ

          【Day-17】DeepLearning系ライブラリ、『Keras』の使い方まとめ(2.x対応版) - プロクラシスト
        • 【書籍紹介】詳解ディープラーニング TensorFlow・Kerasによる時系列データ処理 - HELLO CYBERNETICS

          最近発売されたディープラーニングの本。 基礎的な内容から始まり、主にリカレントネットワークを、TensorFlowとKerasによる実装を通して理解していきます。 結論 今回紹介する本 誰におすすめか TensorFlowあるいはKerasを使っていきたいユーザー リカレントネットワークを使いたいユーザー 誰におすすめでないか Chainerを使っていきたいユーザー 既にTensorFlowあるいはKerasを使いこなしている方 本の構成 1章:数学の準備(1〜22ページ) 2章:Pythonの準備(23〜68ページ) 3章:ニューラルネットワーク(69〜140ページ) 4章:ディープニューラルネットワーク(141〜207ページ) 5章:リカレントニューラルネットワーク(209〜249ページ) 6章:リカレントニューラルネットワークの応用(251〜293ページ) 付録(295〜310ページ

            【書籍紹介】詳解ディープラーニング TensorFlow・Kerasによる時系列データ処理 - HELLO CYBERNETICS
          • kerasの作者François Cholletはもっと歴史を勉強すべき。国や民族単位で批判することの愚かさを知れ - shi3zの長文日記

            • Deep Learning環境はKeras + Docker + Jupyter Notebook + GPUがいいカンジ - もょもとの技術ノート

              はじめに ポチポチKeras動かすのにどのような環境がいいのか考えてみました Keras + Docker + Jupyter Notebook + GPUの環境構築作業ログを紹介します Keras GitHub - fchollet/keras: Deep Learning library for Python. Convnets, recurrent neural networks, and more. Runs on Theano or TensorFlow. わかりやすいインターフェースがかなり好き Docker TensorFlowで学ぶディープラーニング入門~畳み込みニューラルネットワーク徹底解説 を参考にしました この本ではDockerを使用してます 当初はvirtualenv使用して環境作る予定だったので、勉強になりました 環境の移植性いいね GPU使用できるのいいね Ju

                Deep Learning環境はKeras + Docker + Jupyter Notebook + GPUがいいカンジ - もょもとの技術ノート
              • 深層学習ライブラリ Keras - 人工知能に関する断創録

                ここ1年くらいDeep Learning Tutorialを読みながらTheanoというライブラリで深層学習のアルゴリズムを実装してきた。 深層学習の基本的なアルゴリズムならTheanoでガリガリ書くこともできたがより高度なアルゴリズムをTheanoでスクラッチから書くのはとてもきつい*1。 そんなわけでPylearn2、Lasagne、nolearnなどのTheanoベースのラッパーライブラリをいろいろ調べていたのだが、結局のところKerasというライブラリが一番よさげだと思った。KerasはバックエンドとしてTheanoとTensorflowの両方が使え、より高レイヤな表現(たぶんChainerと同レベル)で深層学習のさまざまなアルゴリズムが記述できる。TheanoやTensorflowは完全に隠蔽されており、Kerasで書かれたプログラムはまったく修正せずにTheanoとTensor

                  深層学習ライブラリ Keras - 人工知能に関する断創録
                • Keras Documentation

                  Keras: Pythonの深層学習ライブラリ Kerasとは Kerasは,Pythonで書かれた,TensorFlowまたはCNTK,Theano上で実行可能な高水準のニューラルネットワークライブラリです. Kerasは,迅速な実験を可能にすることに重点を置いて開発されました. アイデアから結果に到達するまでのリードタイムをできるだけ小さくすることが,良い研究をするための鍵になります. 次のような場合で深層学習ライブラリが必要なら,Kerasを使用してください: 容易に素早くプロトタイプの作成が可能(ユーザーフレンドリー,モジュール性,および拡張性による) CNNとRNNの両方,およびこれらの2つの組み合わせをサポート CPUとGPU上でシームレスな動作 Keras.ioのドキュメントを読んでください. KerasはPython 2.7-3.6に対応しています. ガイドライン ユーザー

                  • 【PyTorch、Chainer、Keras、TensorFlow】ディープラーニングのフレームワークの利点・欠点【2017年10月更新】 - HELLO CYBERNETICS

                    ディープラーニングの大流行の中、様々なフレームワークが登場し、気軽にプログラミングができるようになりました。しかし、そんな中どのフレームワークを選べば良いかわからないという人も多いと思います。そんな人に少しでも参考になればと思い記事を書きます。 はじめに Chainer 特徴 柔軟な計算グラフの構築が可能 Pythonによる実装 直感的な計算グラフの構築が可能 メリット・デメリット メリット デメリット まとめ Keras 特徴 とんでもなく簡単に計算グラフを記述可能 高速計算ライブラリのディープラーニング用ラッパー もはやプログラミングの経験すら不要 メリット・デメリット メリット デメリット まとめ TensorFlow 特徴 圧倒的な利用者数 テンソル計算を行うライブラリ Define and Run 追加のライブラリが豊富 メリット・デメリット メリット デメリット まとめ PyT

                      【PyTorch、Chainer、Keras、TensorFlow】ディープラーニングのフレームワークの利点・欠点【2017年10月更新】 - HELLO CYBERNETICS
                    • 少ない画像から画像分類を学習させる方法(kerasで転移学習:fine tuning)

                      ※サンプル・コード掲載 あらすじ 「フルーツの画像を判別するモデルを作ってくれませんか?」 と言われた時に、どのようにモデルを作りますか? ディープラーニングで画像分類を行う場合、通常畳み込みニューラルネットワークという学習手法を使いますが、画像の枚数によっては数週間程度がかかってしまいます。 また、学習に使用する画像の枚数も大量に用意しないといけません。 では、短時間・少ない画像から画像を分類するモデルを作るにはどうすればよいでしょうか。 その解決策として、画像分類でよく使われているfine tuningという手法をご紹介します。 今回はkeras2.0を使ってサンプルコードを書いて行きます。 *keras = Pythonで書かれたニューラルネットワークライブラリ。裏側でtheanoやtensorflowが使用可能。 fine tuning(転移学習)とは? 既に学習済みのモデルを転用

                        少ない画像から画像分類を学習させる方法(kerasで転移学習:fine tuning)
                      • DQNをKerasとTensorFlowとOpenAI Gymで実装する

                        はじめに 少し時代遅れかもしれませんが、強化学習の手法のひとつであるDQNをDeepMindの論文Mnih et al., 2015, Human-level control through deep reinforcement learningを参考にしながら、KerasとTensorFlowとOpenAI Gymを使って実装します。 前半では軽くDQNのおさらいをしますが、少しの強化学習の知識を持っていることを前提にしています。 すでにいくつか良記事が出ているので紹介したいと思います。合わせて読むと理解の助けになると思うので、是非参考にしてみてください。 DQNの生い立ち + Deep Q-NetworkをChainerで書いた DQNが生まれた背景について説明してくれています。Chainerでの実装もあるそうです。 ゼロからDeepまで学ぶ強化学習 タイトルの通り、ゼロからDeepま

                          DQNをKerasとTensorFlowとOpenAI Gymで実装する
                        • Kerasで学ぶAutoencoder

                          Kerasの公式ブログにAutoencoder(自己符号化器)に関する記事があります。今回はこの記事の流れに沿って実装しつつ、Autoencoderの解説をしていきたいと思います。間違いがあれば指摘して下さい。また、Kerasの公式ブログはKerasでの実装に関してだけでなく、機械学習自体についても勉強になることが多く、非常におすすめです。 今回の記事では様々なタイプのAutoencoderを紹介しますが、日本語ではあまり聞き慣れないものもあるかと思いますので、今回は名称を英語で統一したいと思います。 目次 イントロダクション Undercomplete Autoencoder Sparse Autoencoder Deep Autoencoder Convolutional Autoencoder Denoising Autoencoder まとめ イントロダクション Autoencod

                            Kerasで学ぶAutoencoder
                          1