タグ

ブックマーク / www.ajimatics.com (4)

  • 【数学】三人寄れば文殊の知恵が得られることの証明 - アジマティクス

    よく知られた定理として、以下のものがあります。 定理:3人寄れば文殊の知恵 古くから知られている定理ですが、日常的によく使う定理である割にはその証明をきちんと追ったことがある方は少ないのではないかと思います。以下ではこちらの定理の証明を解説します。 前提 まずは要請される前提を確認しておきます。 ・3人の人間がいます。名前はまあ何でもいいですがバルタザール、メルキオール、カスパーだと長いのでA,B,Cとでもしておきましょう。 ・彼らは目の前の問題に対して何らかの意思決定をします。「問題」とは例えば「明日は遊園地に行くことにしようか?」とか、「あの子に告白した方がいいだろうか?」とか、「被告人を有罪にすべきだろうか?」などのことです。 ・3人はそれぞれ、ちゃんと自分で考えて意思決定をします。これはつまり「他の人の判断に影響を受けることなく」ということです。「Aがそう言うんなら俺は意見変えよう

    【数学】三人寄れば文殊の知恵が得られることの証明 - アジマティクス
    quick_past
    quick_past 2019/04/30
    EVAの三つ巴勘ピューターだって、意思決定手続きを使徒にハックされたら、外部からの介入なしには止められなかった。
  • 日本の中心はどの県だ?グラフ理論(ネットワーク)の基本的な諸概念 - アジマティクス

    Q:これは何の構造を表しているでしょう? グラフ理論 上の構造のように、頂点(ノードともいいます)の集まりと、2つの頂点をつなぐ辺(エッジともいいます)の集まりでできたもののことを「グラフ」あるいは「ネットワーク」と呼び*1、このような構造を研究する分野こそが「グラフ理論(Graph theory)」です。今回はそんなグラフを使うと、身近なものの新たな側面が見えてくる話。 (余談ですが「グラフ」という用語は、数学だと関数のグラフとか円グラフみたいなやつもあって検索精度が悪いです。グラフ理論に関してわからないことがあった場合に「グラフ ○○」や「グラフ理論 ○○」とググるよりも、「ネットワーク ○○」とググったほうが得たい情報にリーチしやすいというライフハックが知られています) さて、冒頭のグラフです。グラフ理論の知識なんかひとつもなくても、このグラフから読み取れることはいくつもあります。例

    日本の中心はどの県だ?グラフ理論(ネットワーク)の基本的な諸概念 - アジマティクス
    quick_past
    quick_past 2018/01/31
    てっきり岐阜だと思ってた。これ、伊豆諸島や与那国島は考慮しなくていいのだろうか
  • "独創的すぎる証明"「ABC予想」をその主張だけでも理解する - アジマティクス

    2017年12月16日、数学界に激震が走りました。……というと少し語弊があるでしょうか。 この日、あの「フェルマーの最終定理」に匹敵するとも言われる数学の重要な予想、つまり未解決問題であった「ABC予想」が京都大数理解析研究所の望月新一氏によってついに解決されたというニュースが、数学界を、いや、世界中を駆け巡ったのです。 science.srad.jp とは言っても実は、ABC予想を証明したとする論文は2012年にすでに発表されていて、そこから5年間ずっと「査読中」、つまりその証明が正しいかどうかの検証中だったのです(5年もかかったというのは、それだけこの証明が独創的で難解だったことの証左でもあります)。 端から見ていた所感として、論文が出た当初は、当にこれがABC予想の証明になっているのか疑う向きも多かったようですが、最近では、証明はほぼ間違いないのだろう、というような雰囲気だったよう

    "独創的すぎる証明"「ABC予想」をその主張だけでも理解する - アジマティクス
  • フィボナッチ的らせん三角形と変拍子について(パドヴァン数列の話) - アジマティクス

    11月23日はフィボナッチ数列の日です。ハッピーフィボナッチ! 場イタリアでは、街中にウサギやヒマワリなどの飾り付けをしてこの日を盛大に祝うらしいです。うそです。 フィボナッチ数列 フィボナッチ数列とはすなわち1,1,2,3,5,8,13...という数列のことであり、初項と第2項が1で、前2つの項を足したものが次の項になっているような数列のことです(wikipedia)。 この数列に関して、こんな図を目にしたことがある方も多いのではないかと思います。 最初に一辺の長さが1の正方形を2つ置いて、左隣にそれらに接するように一辺2の正方形を置く。次は上に3。右に5。下に8。左に13。というふうに、正方形をらせん状にくっつけていくと、その辺の長さがフィボナッチ数列になっているというものです。興味深いですね。 これの拡張として、正方形以外の形でもらせん状に配置することってできないのかな? と思うの

    フィボナッチ的らせん三角形と変拍子について(パドヴァン数列の話) - アジマティクス
    quick_past
    quick_past 2016/11/24
    拍子が小節ごとに変わる変拍子と、非メジャーな拍子が混ざっちゃってるような。2+3の5拍子と純粋5拍子で話は変わりそうだし、どこに拍を置くかでいくらでもバリエーションが作れるので。
  • 1