第1章 理論編 ・深層学習とは (p.13-) ・ニューラルネットワークとは (p.31-) ・どうやって学習するか: 勾配降下法 (p.57-) ・深層学習の注意点 (p.91-) 第2章 応用編 ・分類問題 (p.110-) ・画像認識 (p.120-) ・音声認識/自然言語処理…
第1章 理論編 ・深層学習とは (p.13-) ・ニューラルネットワークとは (p.31-) ・どうやって学習するか: 勾配降下法 (p.57-) ・深層学習の注意点 (p.91-) 第2章 応用編 ・分類問題 (p.110-) ・画像認識 (p.120-) ・音声認識/自然言語処理…
(『IT Text 自然語処理の基礎』より) 3ヶ月ほど前に空前のLLMブームについて概観する記事を書きましたが、それ以降も世間のLLMに対する狂騒ぶりは収まるどころかますます拍車がかかるという有様で、あまつさえ僕自身の仕事における日常業務にもじわじわと影響が及びつつあり、今後も良きにつけ悪しきにつけLLMと共生し続ける必要がありそうだと感じている今日この頃です。 そんな猫も杓子もLLMに群がるが如き空前のブームを受けて、エンジニアやデータ分析職の方々の中には「LLMに興味はあるんだけど世の中にあまりにも多くのLLM関連コンテンツが溢れ返っていて何から手をつけたら良いのか分からない」という向きもあるように見受けられます。そこで、僕も断じてLLM以下生成AIの専門家などではないのですが、個人的に「このテキストを読めばLLM時代を生き抜くことが出来そうだ」と感じた書籍を、全くの独断と偏見で3冊
2022年11月にChatGPTが公開され、たった1週間で100万ユーザーを超えたのをきっかけに、GoogleのBardやMicrosoftのBing AI Chatなど、大規模言語モデルを利用したチャットAIが続々とリリースされています。チャットAIを研究しているセバスティアン・ラシュカさんが、チャットAIが実用化されるまでの研究の軌跡を重要な論文24個に絞って要約しています。 Understanding Large Language Models - by Sebastian Raschka https://magazine.sebastianraschka.com/p/understanding-large-language-models ◆目次 ・主要なアーキテクチャとタスク ・スケーリングと効率性の向上 ・言語モデルを意図した方向へ誘導する ・人間のフィードバックによる強化学習(
はじめに ChatGPTのインパクトが個人的にすごかったので、どういった学習が行われているのか、どういう課題があるのか等を理解しようと思い、OpenAIの記事をベースに情報をピックアップしてざっとまとめました。 あくまで私なりの解釈で情報を整理してまとめたものになりますので、いくつか専門性の低い分野に対しては曖昧な記述になっていたり、理解を誤って記載しているかもしれません。 もし間違い等がありましたらご指摘いただけると大変ありがたいです。 ChatGPT: Optimizing Language Models for Dialogue 参考 ChatGPTは、OpenAIによって開発された、対話に特化した言語モデルである。 特徴としては、 前の対話内容に続く質問への回答が可能。 間違いを認めることもできる。 正しくない前提に対する異議を唱えることもできる。 不適切なリクエストには応じない。
2018年にかけて実施されていた、東京大学松尾研究室が監修するエンジニア向け無償教育プログラム「DL4US」の、演習パートのコンテンツが無償公開された。 関連記事:松尾研監修のディープラーニング無償オンラインプログラム「DL4US」が募集を開始 「DL4US」とは?Deep Learningエンジニア育成講座「DL4US」の演習コンテンツを無償公開しました。実装に重きを置いてエンジニア向けに松尾研で作成したもので、画像認識や翻訳モデルから始まり、生成モデルや強化学習まで扱う実践的な内容になっています。ご興味ある方はぜひ。https://t.co/jLWlrk9UdK — 松尾 豊 (@ymatsuo) 2019年5月15日 DL4USは高度なディープラーニング技術者を育成することを目的とした、アプリケーション指向の無償オンライン教育プログラムだ。 東京大学ディープラーニング基礎講座、応用講
アドバンスドテクノロジーラボの石川有です. 株式会社リクルートテクノロジーズ Advent Calendar 2014 – Qiita の 12/16 分でエントリーを書きます. 大規模データを扱った機械学習用ライブラリがオープンソースで利用できる便利な時代ですが,まだまだ真の意味でエンジニアリングと機械学習研究の融合は果たせていないと思います. 従来のソフトウェアエンジニアリングではソースコードに対する知見が提案され実用されていますが,いざ機械学習システムの開発・運用に適応してみると「それだけ」では足りないということを実感します. その開発と運用のしづらさは何によるものなのか,それを回避するためのアンチパターンはなんなのかなどのヒントを,Google の D. Sculley らが Machine Learning: The High Interest Credit Card of Te
Quoraに投稿された質問 "What has happened in theoretical machine learning in the last 5 years (2009-2014)?" 「2009年から2014年の機械学習の理論的進歩について教えてください」 への、機械学習研究者Yisong Yueの回答を翻訳しました。そのままだと通じない部分は意訳しているので、原文に忠実ではありません。 「2009年から2014年の機械学習の理論的進歩について教えてください」への回答 私の個人的な視点で話します。 潜在変数モデルに対する最適推定について: 理論的な進歩として私が最初に思いつくのは、潜在変数モデルに対する(ほぼ)最適な推定です。この潜在変数モデルの最適推定は一般的に非凸な問題であり、つまり(よく知られている)凸最適化の手法の通用しない難題です。 最も輝かしいアプローチはスペクト
@torotoki です。Machine Learning Advent Calendar 2012 7日目は、俗に言う脳科学とよばれる神経科学(neuroscience)の中でも計算論的神経科学(computational neuroscience)という分野です。学問的な入門書ではまず、脳の神経細胞の仕組みや、多々のニューロンの数理モデルを学びますが、そういったものは参考文献の良書にまかせて、計算論的神経科学とは何であるか、ということについて書きたいと思います。 計算論的神経科学とは 神経科学の目標として脳のしくみを理解するというものがありますが、どうしたら本当に脳を理解したと言えるのかは難しい問題です。この計算論的神経科学では、数理モデルを用いて理論的、トップダウン的に推論し、それを実際の脳の構造や実験結果などボトムアップ的知見と対照することにより、脳のしくみを理解しようとする分野で
統計的機械学習入門(under construction) 機械学習の歴史ppt pdf 歴史以前 人工知能の時代 実用化の時代 導入ppt pdf 情報の変換過程のモデル化 ベイズ統計の意義 識別モデルと生成モデル 次元の呪い 損失関数, bias, variance, noise データの性質 数学のおさらいppt pdf 線形代数学で役立つ公式 確率分布 情報理論の諸概念 (KL-divergenceなど) 線形回帰と識別ppt pdf 線形回帰 正規方程式 正規化項の導入 線形識別 パーセプトロン カーネル法ppt pdf 線形識別の一般化 カーネルの構築法 最大マージン分類器 ソフトマージンの分類器 SVMによる回帰モデル SVM実装上の工夫 クラスタリングppt pdf 距離の定義 階層型クラスタリング K-means モデル推定ppt pdf 潜在変数のあるモデル EMアル
脳を理解し BESOM モデルを拡張するために必要な知識の 良質な情報源を、独断で選んで紹介します。 ( 2014-06-04 更新) (2013-02-07: 内容が一部古くなっています。 また、少し敷居を上げ過ぎた感があるので、もう少し絞り込んで整理し直したいと思っています。) ★★★・・・ 必読。脳を理解しようとする人は必ず目を通すべきだと思います。 ★・・・ おすすめ。大変役に立ちます。 * こちらもご覧ください。 「脳を理解するための情報源メモ」更新予定メモ 目次 脳科学全般 機械学習 パターン認識、 自己組織化マップ、 ベイジアンネット、 独立成分分析、 主成分分析、 強化学習、 特徴選択、 正則化、 フレーム、 Deep Learning 認知科学・心理学 遂行機能、 事象関連電位、 アフォーダンス、 選択的注意 神経科学 神経解剖学、 計算論的神経科学 哲学 意識、 自由意
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く