タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

*algorithmと*programと*gameに関するsh19910711のブックマーク (2)

  • 自作シンプル物理演算ゲームを強化学習で攻略させる【Unity ML-Agents v3.0】 - Qiita

    自作シンプル物理演算ゲームを強化学習で攻略させる【Unity ML-Agents v3.0】 以前から機械学習などに興味があったものの、難しそうでためらっていたのですが、Unityで強化学習ができるML-Agentsというものがあると知り、理論についてほぼ何も知識のない自分でも、なんだかいけそうだと思って試してみました。 まずは公式サンプルゲームを動かしてみたのですが、何か自作ゲームを学習させてみないと理解が進まないと思い、なるべくシンプルで最小限の構成になるようなゲームを考えました。そして、せっかくUnityを使うので物理演算も入れたい。 そこで考えたのが、上から降ってくる物体をヘディングのようにバウンドさせるゲームです。人間が手動でプレイするとこんな感じになります。これを強化学習させて攻略させてみました。 これ以下の内容はML-Agentsの公式サンプルを動かすところまで出来る方が対象

    自作シンプル物理演算ゲームを強化学習で攻略させる【Unity ML-Agents v3.0】 - Qiita
  • リバーシプログラムの作り方 サンプル

    序章 はじめに リバーシのルール ソースコードの記述について 第1章 盤面の処理 1.1 定数と関数の定義 1.2 盤面の生成、初期化 1.3 石を返す処理 1.4 返せる石数を調べる処理 1.5 盤面をコピー、反転させる処理 1.6 その他の盤面処理 1.7 盤面の操作と表示 第2章 ゲーム木と探索 2.1 コンピュータ思考の関数定義 2.2 各関数の実装 2.3 ゲーム木 2.4 MinMax法とNegaMax法 2.5 αβ法 第3章 盤面の評価 3.1 評価関数の定義 3.2 パターンによる局面評価 3.3 評価クラスの構造 3.4 評価クラスの生成とファイルの読み書き 3.5 評価関数の実装 3.6 評価パラメータの更新 3.7 中盤の探索 3.8 自己対局による学習 第4章 性能改善 4.1 石数取得の高速化 4.2 着手の高速化 4.3 候補手リストの導入 4.4 終盤探索の

  • 1