このコーナーでは、2014年から先端テクノロジーの研究を論文単位で記事にしているWebメディア「Seamless」(シームレス)を主宰する山下裕毅氏が執筆。新規性の高いAI分野の科学論文を山下氏がピックアップし、解説する。 X: @shiropen2 英オックスフォード大学や英ケンブリッジ大学などに所属する研究者らが発表した論文「AI models collapse when trained on recursively generated data」は、AIモデルが自己生成したデータで繰り返し学習すると、モデルの性能が低下していく「モデル崩壊」という現象を発見した研究報告である。 研究チームは、大規模言語モデル(LLM)、変分オートエンコーダー(VAE)、ガウス混合モデル(GMM)など、幅広い生成AIモデルを対象に実験を行った。その結果、AIモデルが生成したデータを次世代のモデルの学習に