第16回 StringBeginners での発表資料

顔検出機能はここ数年で急激に普及してデジカメとかケータイとかにフツーに入るようになったり、Google画像検索のオプションに入ってたりして、すっかりコモディティ化しちゃってるけど、ちょっと前まではすごい困難で実用化に手を出すなんてとてもとてもな技術だったんだよね。 2001年のViola & Johnsの論文*1で超高速&超正確な検出アルゴリズムが発表されるまでは。 これの画期的だった点は非力なパソコン(とか現在のケータイ内蔵CPUとか)で画像中からリアルタイムに顔を検出できたことなんだ。 キモは3点。 Integral-ImageによるHaar-like検出器の高速演算 AdaBoostによる検出能力の強化 多段フィルタ(cascade)による非顔領域の高速排除 具体的にどれがViolaらのオリジナルの仕事なのかはよく知らないけれど。 少なくとも一個目と三個目はそうな気がする。 Inte
情報処理学会の学会誌『情報処理』の2008年9月号(Vol.49, No.9)に「3日で作る高速特定物体認識システム」という特集記事があります。OpenCVを用いた面白そうなプロジェクトなのでレポートにまとめてみようと思います。3日でできるかはわからないけど。 残念ながらこの記事はPDFを無料でダウンロードすることができません(CiNiiでオープンアクセス可能になったみたいです)。なので会員以外で元記事が読みたい人は図書館でコピーする必要があるかも・・・また、2009年9月号の人工知能学会誌にも物体認識の解説「セマンティックギャップを超えて―画像・映像の内容理解に向けてー」があります。こちらも非常に参考になりますが同様にPDFが手に入りません・・・。他にもいくつかわかりやすい総説論文へのリンクを参考文献にあげておきます。 物体認識とは 物体認識(object recognition)は、画
Competitive Programming Advent Calendar 3日目は、数学っぽい話をしたいと思います。 N以下の素数をすべて求めよ。 N以下の素数の個数を求めよ。 A以上B以下の素数の個数を求めよ。 こんな感じの問題を見たことがあると思います。また問題としてでなくても、解く過程にこのようなサブ問題を解かなければいけない場合もよくあると思います。素数については説明しなくてもいいですよね? このような問題を素数列挙と呼ぶことにします。素数列挙ができれば、大きい数の素数判定や素因数分解をめっちゃ高速化したり、トーティエント関数、メビウス関数等、数学系のいろんな関数を求めたりできます。最近のもので素数列挙がほぼ必須のものだと Codeforces Beta Round #86 (Div. 1 Only) C. Double Happiness ICPC 国内予選 2011 A
2006年のデータマイニング学会、IEEE ICDMで選ばれた「データマイニングで使われるトップ10アルゴリズム」に沿って機械学習の手法を紹介します(この論文は@doryokujin君のポストで知りました、ありがとうございます!)。 必ずしも論文の内容には沿っておらず個人的な私見も入っていますので、詳細は原論文をご確認下さい。また、データマイニングの全体観をサーベイしたスライド資料がありますので、こちらも併せてご覧下さい。 データマイニングの基礎 View more presentations from Issei Kurahashi 1. C4.5 C4.5はCLSやID3といったアルゴリズムを改良してできたもので、決定木を使って分類器を作ります。決定木といえばCARTが良く使われますが、CARTとの違いは以下のとおりです。 CARTは2分岐しかできないがC4.5は3分岐以上もできる C
効率的な別解とか存在する問題もあるけど演習によさそうなやつをピックアップ。そのアルゴリズムじゃないと解けないわけではないって問題も多いので注意。(ただ演習するのには都合が良いかなと)※個人的難易度をつけてみました。とても主観的な難易度付けなので気にせず解いてみてください。深さ優先探索・Balls[☆]・Sum of Integers[☆]・The Number of Island[☆]・Block[★]幅優先探索・Mysterious Worm[★]・Cheese[★]・Seven Puzzle[★☆]・Stray Twins[★★]・Deven-Eleven[★★]・Summer of Phyonkichi[★★☆]ワーシャルフロイド法(For 全点対最短路問題)・Traveling Alone: One-way Ticket of Youth[★]・A reward for a Car
POJとは何? 北京大学(PKU)の運営しているプログラミングの問題のジャッジシステムです。具体的に言うと、問題に対する答えとなるプログラムのソースコードを送信すると、それが正解かどうかを判定するものです。POJを通して、プログラムにおけるアルゴリズムを組む練習ができ、またTopCoder,ICPC,情報オリンピックなどのプログラミングコンテストの対策ともなります。 POJの公式サイトで登録した後は、まずこの下のFAQを読み、1000番を解いてみるといいでしょう。 翻訳された何か FAQ 翻訳された問題 1000~1999 2000~2999 3000~3999 4000~ 翻訳された問題数:143/4021(2012/2/10 現在) 編集ルール ひとつのページにひとつの問題の訳を載せてください。 問題のページ名は、[問題番号をあらわす四桁の番号]+[半角空白]+[問題の名前(原文)]と
X×Y個のセルから成るグリッド上のスタート地点から出発し、全5種類のパチクリ(生物)を捕まえた状態でゴール地点まで行く最短コストを求める問題です。各パチクリはそれぞれ、火、氷、木、土、水の属性を持ち、火のパチクリは氷のパチクリを捕まえることができ、氷のパチクリは木のパチクリを捕まえることができ、といったように火→氷→木→土→水→火というような属性の関連があります。スタート地点で最初に持つパチクリを1つ選ぶことができます。グリッドのサイズx, y はそれぞれ2以上1000以下で、各属性のパチクリの数はそれぞれ0以上1000以下です(全体の数は5000以下)。 最初に1つのパチクリを選んだ後のパチクリを捕まえる順番は、上記属性の関連の順番になります。例えば最初に火の属性をもつパチクリを持っていれば、氷、木、土、水の属性をもつパチクリを順番に捕まえてゴールに行けばよいので、下図に示すDAG(Di
ACM/ICPC(プログラミングコンテスト)系列の問題を解くことを目標にして,各種アルゴリズムを C++ で実装してみた.極めて意地が悪い類の問題には対応していないし,特定の入力に対して高速に動くということもない.計算量も最良とは限らない. これらを参考にする方への注意とお願い: これらの記述は正確とは限りません.参考文献を参照することを強く推奨します.間違っている場合は是非教えてください. これらのプログラムは間違っているかもしれません.各人で検証することを強く推奨します.バグがあれば是非教えてください. 分類が怪しいので,これはこっちだろう,ということがあればコメントを下さると助かります. 注意! 現在書き換え中 TODO 分類を正しく行う. 全体的に説明と使い方を詳しく. Verify していないものを Verify. ボロノイ図(いつになることやら……) 基本 テンプレート グラフ
会誌「情報処理」連載の「プログラム・プロムナード」(2002年4月〜2005年3月掲載)と「Haskellプログラミング」(2005年4月〜2006年3月掲載)はどなたでもご覧になれます。ファイルはすべてPDF形式です。 「Haskellプログラミング」に掲載されたプログラムは http://www.sampou.org/haskell/ipsj/ から取ることができます.
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く