今年の目標(2018/1/1)で宣言したとおり今年はPyTorchを使えるようにしていこうと思ってます! ここにPyTorchのリソースをまとめる予定です。一気に追加すると収拾つかないため内容を吟味してから追加してこうと思います。外部リンク集の2つのサイトはPyTorchに関するチュートリアルや論文の再現実装など大量のリソースがまとまっていてとてもおすすめです。あと公式のチュートリアルはとてもしっかり書かれていて勉強になります。こちらもおすすめ。 PyTorch - 本家 PyTorch Forums - 本家フォーラム PyTorch Official Tutorials - 本家のチュートリアル PyTorch Official Examples - さまざまな実装例 外部リンク集 The Incredible Pytorch - チュートリアルから各種アルゴリズムの実装まで大量に紹介
Pythonの機械学習用ライブラリの定番、scikit-learnのリリースマネージャを務めるなど開発に深く関わる著者が、scikit-learnを使った機械学習の方法を、ステップバイステップで解説します。ニューラルネットを学ぶ前に習得しておきたい機械学習の基礎をおさえるとともに、優れた機械学習システムを実装し精度の高い予測モデルを構築する上で重要となる「特徴量エンジニアリング」と「モデルの評価と改善」について多くのページを割くなど、従来の機械学習の解説書にはない特長を備えています。 関連ファイル サポートページ 正誤表 ここで紹介する正誤表には、書籍発行後に気づいた誤植や更新された情報を掲載しています。以下のリストに記載の年月は、正誤表を作成し、増刷書籍を印刷した月です。お手持ちの書籍では、すでに修正が施されている場合がありますので、書籍最終ページの奥付でお手持ちの書籍の刷版、刷り年月日
秋山です。 機械学習が人気ですが、「Word2Vec」「Doc2Vec」という、文章などを分析するニューラルネットワークモデルを知っていますか? すごーく簡単に言うと、「Word2Vec」は単語の類似度のベクトル、「Doc2Vec」は文章の類似度のベクトルを表現します。 結構前に話題になったので既に知っている人も多いかもしれませんが、今回はpaizaのスキルチェック問題に提出された一部のコードを対象に、「Word2Vec」と「Doc2Vec」でどんなことができるかやってみたいと思います。(※スキルチェック問題や回答の内容は判別できないように処理しています) ■Word2Vecについて ざっくり言うと、ある単語の周辺に別の単語が出現する確率……みたいなものを見てくれます。ニューラルネットワークを使って、類似度を求めています。Word2Vecは隠れ層1、出力層1の、2層のニューラルネットワーク
ソフトウェアエンジニアがFPGA(field-programmable gate array)を使うハードルがさらに下がってきている。クラウドサービスでFPGAを活用できたり、Pythonで記述したニューラルネットワークをFPGAに高位合成できる研究成果が出てきたりしているのだ。 ソフトウェア開発者の立場でFPGAに取り組むイベント「FPGAエクストリーム・コンピューティング」を主宰する佐藤一憲氏、FPGAの高位合成によるディープラーニングについて研究している東京工業大学の中原啓貴氏(中原研究室)、そしてFPGAベンダーであるザイリンクスの神保直弘氏が、急激に常識が変わりつつあるFPGAの動向を語り合った。 本稿では座談会の中から、ソフトウェアエンジニアにFPGAや高位合成が求められる現状、そして、今後どのようなツールを使うべきか、ソフトウェアエンジニアがFPGAに取り組む際の課題などにつ
TensorFlowとは2015/11/9にオープンソース化されたGoogleの機械学習ライブラリです。この記事ではディープラーニングと言われる多層構造のニューラルネットワークをTensorFlowを利用して構築しています。 TensorFlowはPythonから操作できますがバックエンドではC++で高速に計算しています。macのPython2.7系環境でTensorFlowの上級者用チュートリアルを行い、手書き認識率99.2%の多層構造の畳み込みニューラルネットワークモデルの分類器を構築したときの作業メモです。特別な設定なしにCPU使用率270%メモリ600MByteとちゃんと並列計算してくれました。MNISTランキングを見ると認識率99.2%は上位のモデルとなるようです。 TensorFlowチュートリアル TensorFlowの初心者用と上級者用チュートリアル2つに取り組んでみました
今話題のDeep Learning(深層学習)フレームワーク、Chainerに手書き文字の判別を行うサンプルコードがあります。こちらを使って内容を少し解説する記事を書いてみたいと思います。 (本記事のコードの全文をGitHubにアップしました。[PC推奨]) とにかく、インストールがすごく簡単かつ、Pythonが書ければすぐに使うことができておすすめです! Pythonに閉じてコードが書けるのもすごくいいですよね。 こんな感じのニューラルネットワークモデルを試してみる、という記事です。 主要な情報はこちらにあります。 Chainerのメインサイト ChainerのGitHubリポジトリ Chainerのチュートリアルとリファレンス 1. インストール# まずは何はともあれインストールです。ChainerのGitHubに記載の"Requirements" ( https://github.c
こんにちは、得居です。最近は毎晩イカになって戦場を駆けまわっています。 本日、Deep Learning の新しいフレームワークである Chainer を公開しました。 Chainer 公式サイト GitHub – pfnet/chainer Chainer Documentation Chainer は、ニューラルネットを誤差逆伝播法で学習するためのフレームワークです。以下のような特徴を持っています。 Python のライブラリとして提供(要 Python 2.7+) あらゆるニューラルネットの構造に柔軟に対応 動的な計算グラフ構築による直感的なコード GPU をサポートし、複数 GPU をつかった学習も直感的に記述可能 ニューラルネットをどのように書けるか 次のコードは多層パーセプトロンの勾配を計算する例です。 from chainer import FunctionSet, Vari
Several recent papers have explored self-supervised learning methods for vision transformers (ViT). Key approaches include: 1. Masked prediction tasks that predict masked patches of the input image. 2. Contrastive learning using techniques like MoCo to learn representations by contrasting augmented views of the same image. 3. Self-distillation methods like DINO that distill a teacher ViT into a st
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く