タグ

studyとstatisticsに関するsomathorのブックマーク (8)

  • ベイズ統計学を勉強する参考書のフロー - Qiita

    慶應義塾大学・株式会社Nospareの菅澤です. 今回はベイズ統計学を勉強するための参考書の順番 (私見) について紹介していきます. 3年ほど前に『日語で学べるベイズ統計学の教科書10冊』を紹介しましたが,今回は「どのような順番でどの参考書を読んでいくと比較的スムーズに勉強が進められるのか」に焦点を当て,比較的最近の書籍や英語の書籍まで含めて紹介していきます. まずは全体的なフローのイメージを提示しておきます. 今回の記事では,「ベイズ統計学を勉強すること」のスタートとゴールを以下のように定めます. (スタート) 統計学の基礎的な内容 (統計検定2級程度の内容) は身についている (ゴール) ベイズモデリングに関する最新の論文がある程度理解して読め,自力でモデルを組んだり実装することができる また,このゴールへの道のりとして,大きく2通りのルートを想定します. (ルートA: フルスクラ

    ベイズ統計学を勉強する参考書のフロー - Qiita
  • データマイニング入門

    ビックデータ分析技術は情報処理技術を学ぶ上で重要となっている。講義では、データ分析・データマイニングの基礎について学ぶとともに演習を通して実際にデータを分析するプロセスを学ぶ。特に、前期課程の「データマイニング入門」講義のさらに発展的な内容を学習することで、後期課程や大学院におけるデータサイエンス、人工知能機械学習、自然言語処理などの関連講義の基礎となる知識を習得することを目標とする。

    データマイニング入門
  • 統計検定1級(2021)を受験した話(統計数理の試験対策・勉強編) - Taro Masuda’s diary

    この記事は何? タイトルの通り、2021年の統計検定1級試験を受験し統計数理に合格してきたので、記憶が鮮明なうちに勉強してきた内容をメモしておこうと思います。ちなみに、統計検定は私にとって今回が(級によらず)初めての受験でした。 対策・勉強した内容以外の、当日の受験体験記は以前に公開していますので、そちらもご興味あればぜひ併せてご覧ください。 taro-masuda.hatenablog.com 免責 あくまで個人的な方法論であるため、記事の情報が必ずしも今後の試験においてそのまま有効であるとは限りませんのでご注意ください。損失等をこうむられた場合であっても、筆者は一切の責任を負いかねます。 TL;DR 久保川先生の教科書『現代数理統計学の基礎』の2~8章の章末問題((*)印は飛ばす) + 統計数理は過去問を仕上げました。過去問は1ヶ月以上前からやるのがお勧めです。 現代数理統計学の基礎

    統計検定1級(2021)を受験した話(統計数理の試験対策・勉強編) - Taro Masuda’s diary
  • 統計の入門

    この講座は『受講登録する(無料)』ボタンを押すと受講開始となる『開始日可変型講座』です。 『開始日可変型講座』とは、受講者個々の受講開始日に応じて進行する講座です。 ご自身のスケジュールは、以下の講座スケジュール(PDF)を参考にご確認ください。 講座内容 統計に関する知識は、実験、試験、調査などの結果を用いた実証研究を行う上でなくてはならないものである。生活に関わるさまざまな効果やリスクがデータとともに語られ、生活者としても統計に対するリテラシーが求められるようになった。企業活動では、情報技術の発展によって、日々膨大なデータが生成されており、その活用が求められるようになった。講座は、研究や、生活、社会・経済活動に不可欠な統計を、集計・分析し、理解する力を養うことを目的とした「統計入門」「続統計入門」を圧縮した内容になっている。これから統計を学ぼうとする初学者や、学び直しを目指す学生を主

    統計の入門
  • 何故データサイエンティストになりたかったら、きちんと体系立てて学ばなければならないのか - 渋谷駅前で働くデータサイエンティストのブログ

    先日、Quora日語版でこんなやり取りがありました。 基的にはここで述べた通りの話なのですが、折角なのでブログの方でも記事としてちょっとまとめておこうと思います。題して「何故データサイエンティストになりたかったら、きちんと体系立てて学ばなければならないのか」というお話です。 問題意識としては毎回引き合いに出しているこちらの過去記事で論じられているような「ワナビーデータサイエンティスト」たちをどう導くべきかという議論が以前から各所であり、それらを念頭に置いています。なお毎度のことで恐縮ですが、僕も基的には独学一の素人ですので以下の記述に誤りや説明不足の点などあればご指摘くださると幸いです。 一般的なソフトウェア開発と、統計分析や機械学習との違い 統計分析や機械学習仕事にするなら、その「振る舞い」を体系立てて学ぶ必要がある きちんと体系立てて学ばなかった結果として陥りがちな罠 余談

    何故データサイエンティストになりたかったら、きちんと体系立てて学ばなければならないのか - 渋谷駅前で働くデータサイエンティストのブログ
  • 無料の統計学講座が開講、多変量データの解析法を学べる | Ledge.ai

    画像は『「統計学Ⅲ:多変量データ解析法」講座PV ~ gacco:無料で学べる大学講座』より オンライン講座サイト「gacco(ガッコ)」では2021年1月14日から、日統計学会と日行動計量学会の協力のもとに作成した「統計学Ⅲ:多変量データ解析法」が開講される。受講料は無料。 『「統計学Ⅲ:多変量データ解析法」講座PV ~ gacco:無料で学べる大学講座』より 実際のデータは複数個の測定項目からなる多変量データであることが多く、そのようなデータの統計解析手法の学習は、統計手法の現実問題への応用で極めて重要なものと言える。講座では、多変量解析法を実際のデータに適用する際の注意点や実際の応用例を中心に学習できる。 『「統計学Ⅲ:多変量データ解析法」講座PV ~ gacco:無料で学べる大学講座』より 講師は、横浜市立大学データサイエンス学部教授の岩崎学氏、大阪大学大学院人間科学研究科

    無料の統計学講座が開講、多変量データの解析法を学べる | Ledge.ai
  • 総務省が無料データサイエンス講座を開講、松尾豊氏ら講師に | Ledge.ai

    画像は『総務省統計局「社会人のためのデータサイエンス演習」講座PV』より 総務省は9月29日から、実践的なデータ分析の手法を学習できるとうたう、データサイエンス・オンライン講座「社会人のためのデータサイエンス演習(外部サイト)」を開講している。登録料および受講料は無料。閉講日時は12月7日の23時59分。 講座では、ビジネスや行政での活用を想定しており、社会人や大学生に向けて、ビジネスや業務上での分析事例を中心に実践的なデータ分析(統計分析)の手法をわかりやすく解説するという。前提条件は表計算ソフトMicrosoft Excelの基的な操作ができること。 『総務省統計局「社会人のためのデータサイエンス演習」講座PV』より 講師は、総務省統計局の會田雅人氏、総務省統計局の阿向泰二郎氏、株式会社電通の佐伯諭氏、東京大学の松尾豊氏、株式会社ブレインパッドの奥園朋実氏、株式会社ブレインパッドの

    総務省が無料データサイエンス講座を開講、松尾豊氏ら講師に | Ledge.ai
  • 社会人が統計学や機械学習を学ぶなら「落下傘方式」で - 渋谷駅前で働くデータサイエンティストのブログ

    今日何気なく呟いたツイートが、見ていたら結構RT&favされていた模様で。 社会人が統計学とか機械学習を独習するには、いわゆる「落下傘方式」が良いと思う。必要な時にその項目だけ学んで実践する。その繰り返しで学問体系のマス目が埋まっていけば良し。あと、初めに体系立ったテキストを分からなくても良いので通読するのも良し。だいたいの地図が頭に入る。— TJO (@TJO_datasci) 2014, 3月 31 この後も色々補足で呟いたんですが、せっかくなので簡単にまとめたものを書いてみました。これから社会人で統計学や機械学習を学ぼうと考えている人の参考になれば嬉しいです。 あ、これはベタな言い方をすれば「データサイエンティスト(死語)になるにはどうしたら良いか」にもつながる話なんですが、ここではもっと広く「統計学や機械学習を使う仕事をしたいと思ったらどう独習するべきか」という話にしておこうと思い

    社会人が統計学や機械学習を学ぶなら「落下傘方式」で - 渋谷駅前で働くデータサイエンティストのブログ
  • 1