タグ

自然言語処理に関するt10471のブックマーク (15)

  • 自然言語処理における畳み込みニューラルネットワークを理解する · けんごのお屋敷

    最近、畳み込みニューラルネットワークを使ったテキスト分類の実験をしていて、知見が溜まってきたのでそれについて何か記事を書こうと思っていた時に、こんな記事をみつけました。 http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp 畳み込みニューラルネットワークを自然言語処理に適用する話なのですが、この記事、個人的にわかりやすいなと思ったので、著者に許可をもらって日語に翻訳しました。なお、この記事を読むにあたっては、ニューラルネットワークに関する基礎知識程度は必要かと思われます。 ※日語としてよりわかりやすく自然になるように、原文を直訳していない箇所もいくつかありますのでご了承ください。翻訳の致命的なミスなどありましたら、Twitterなどで指摘いただければすみやかに修正します。 以下

    自然言語処理における畳み込みニューラルネットワークを理解する · けんごのお屋敷
  • [O] MeCab 用の新語辞書 mecab-ipadic-neologd を公開しました

    MeCab 用の新語辞書 mecab-ipadic-neologd を公開しました Tweet [NLP] 日語の文書を機械的に処理しようと思った時に、ほとんどの人が MeCabとIPADIC(IPA辞書)の両方、または、どちらかを使うことになります。 IPADICはとてもよく出来ていますが、更新されないまま年月が過ぎているので、例えば2015年3月上旬に急に流行ったような言葉は収録していません。そのため、今日生まれたような新しい文書(例、Apple Watch発売)を解析する時に困ります。困らない人もいますけど、僕は困ります。 その課題に対処するために、日全国津々浦々、自然言語処理に関わる全ての人は独自にMeCabの新語辞書を作って対応しているわけです。その際に元データとして使われることが多いのは Wikipedia語版やはてなキーワードなどです。 困ったことに、新語辞書を生成

  • Mecab Pythonを使ったTF・IDFによるWikipediaの重要単語抽出 - Y's note

    入門 自然言語処理 作者: Steven Bird,Ewan Klein,Edward Loper,萩原正人,中山敬広,水野貴明出版社/メーカー: オライリージャパン発売日: 2010/11/11メディア: 大型購入: 20人 クリック: 639回この商品を含むブログ (44件) を見る TF・IDF計算 自然言語処理の勉強としてTF・IDFによる重要単語の抽出をwikipediaのデータに対して試してみます。TF・IDFを一言でまとめると、とある単語の重要度を出現頻度から計算する手法です。計算結果は重みを表します。TFは単語の出現数(Term Frequency)、IDFは総文書数 / 単語が出現する文書の総数の対数(Inverted Document Frequency)、TFIDFはその積になります。数式にすると以下のようになりますが、Webを検索してみると人によって計算の仕方が異

    Mecab Pythonを使ったTF・IDFによるWikipediaの重要単語抽出 - Y's note
  • Topicに基づく統計的言語モデルの最前線 PLSIからHDPまで

    , 2006.3.13 Topic URL= http://www.mibel.cs.tsukuba.ac.jp/~myama/pdf/topic2006.pdf • – • ex. • – – – • • UM DM PLSI LDA [ 1999] HDP � �� �� �� �� �� ��������������������������������������������������������� Eurospeech 㖸㗀ቇળ⎇ⓥ⊒⴫ળ ᤐ ⛔ ⸘ ⊛ ⸒ ⺆ ࡕ ࠺ ࡞ 㑐 ㅪ ⺰ ᢥ ᢙ ࡐࠬ࠲࡯㒰ߊ㧕 1/2 • • n-gram – Noisy Channel Models – – • – – 2/2 • PLSI LDA Probabilisitic LSI Latent Dirichlet Allocation UM DM Unigram Mixtures Diri

  • CRF について(可変次数 CRF への前振り) - アスペ日記

    最大エントロピーモデルの続き。 今回は、CRF(Conditional Random Fields, 条件付き確率場とも) 一般*1について。 前向き・後ろ向きアルゴリズムについては書かない。 また、一般に関連が深いとされる MEMM というものについても、ここでは触れない。 CRF とはどういうものか。 一言でいうと、最大エントロピーモデルの考え方を系列ラベリングに応用したもの。 ここで、系列ラベリングというタスクについて簡単に説明しておく。 たとえば、品詞タグ付けのようなものがある。 英語のように単語が分かれている言語で、それぞれの単語に対して「名詞」「動詞」などの品詞タグをつけるというタスク。 古典的な "time flies like an arrow"*2 を例にとる。 これには複数の解釈があり、その中には 時は矢のように過ぎ去る(光陰矢のごとし) 時バエは矢を好む のようなもの

    CRF について(可変次数 CRF への前振り) - アスペ日記
  • 大規模テキストにおけるN-gram統計 - Negative/Positive Thinking

    はじめに 大規模なテキストデータでのN-gram統計を取る場合、特にNが大きい場合(N>=3)は、組み合わせの数が多くなり出てくるN-gramをすべてメモリに保持しながら個数をカウントするのが難しい。効率的な方法があるのを知ったのでちょっと試してみた。 大規模テキストにおけるN-gram統計の取り方 岩波講座ソフトウェア科学15「自然言語処理」 論文: http://ci.nii.ac.jp/naid/110002934647 手順 ngramを取りたい文章を1つの文として扱う この文をメモリに読み込み、各文字の先頭アドレスを保持する配列を作成 その先頭アドレスの場所の文字から文最後までの部分文字列を1つの単語とみる この単語を辞書順に並び替える(アドレス配列だけ) ソートした単語の順番で、次の単語と「先頭から共通している文字数」を保持する配列を作成 Ngramをカウントするときは、単語の

    大規模テキストにおけるN-gram統計 - Negative/Positive Thinking
  • 自然言語処理を活用したwebサービスをつくるときに参考になる5冊の書籍 - EchizenBlog-Zwei

    自然言語処理を活用したwebサービス開発に関わって5年以上経った。いい機会なのでこれまでを振り返って役に立ったと思う5冊をメモしておく。 1.珠玉のプログラミング―質を見抜いたアルゴリズムとデータ構造 まずはこれ。有名ななので知っている人も多いと思う。簡単に説明するとちょっと前に「フェルミ推定」という名前で流行ったような、データから必要な数値を概算する方法や、問題が起きたときに問題点がどこにあるのか?最小の労力で解決するにはどこをいじればよいのか?などが書いてある。「webサービスで自然言語処理だ!」というと無限に夢が広がりがちなので、どういうデータが使えるのか、それをどういう形にもっていけばイケてるサービスになるのか、それはどのくらいの期間で実現できるか、ということを考える必要がある。そういうわけで書は真っ先に読むべき一冊なのでは(余談だけれど、以前M << Nなデータに対してO(

    自然言語処理を活用したwebサービスをつくるときに参考になる5冊の書籍 - EchizenBlog-Zwei
  • 実践! 「MapReduceでテキストマイニング」徹底解説

    青空文庫」をテキストマイニング! 前回の「いまさら聞けないHadoopとテキストマイニング入門」では、Hadoopとテキストマイニングの概要や構成、MapReduceの仕組み、Hadoopの活用場面などを解説し、Hadoopの実行環境を構築しました。今回から、Hadoopを使い、テキストマイニングのMapReduceプログラムを作成していきます。 「青空文庫」というサイトをご存じでしょうか。青空文庫は、著作権が切れた日の文学作品を掲載しているWebサイトで、青空文庫の全データをDVDや、BitTorrentによる配信で入手できます。今回は、このデータを使ってテキストマイニングを行いましょう。 前回、テキスト分類で、著者の性別、年齢、地域、職業などの属性も推定できると書きましたが、青空文庫は、他のデータにはない、著者属性があります。青空文庫の作品は、著作権が切れて、作者がなくなっている場

    実践! 「MapReduceでテキストマイニング」徹底解説
  • Seeking for my unique color.

    最近はこんな活動やってます(詳細はこちら)。 卒研発表会での発表(アクセス数予測モデルの作成)1000speakersでの発表(ロジスティックモデルを用いたTwitter remove判別モデル)Tsukuba.R(R userのためのコミュニティ活動)Tsukuba.R#1, Tsukuba.R#2, Tsukuba.R#3, Tsukuba.R#4, Tsukuba.R#5, Tsukuba.R#6企業でのインターン(RA含む) => データフォーシーズ、はてなDBCLS、NTT CS研学会発表 => 言語処理学会2011、AAAI2011

  • いまさら聞けないHadoopとテキストマイニング入門

    ビッグデータ時代の救世主「Hadoop」とは 「Apache Hadoop」は今、最も注目を集めている技術の1つです。Hadoopとは、大量のデータを手軽に複数のマシンに分散して処理できるオープンソースのプラットフォームです。 Hadoopを活用している企業は年々増え続けていて、不可欠な技術になりつつあるといえるでしょう。 連載では、Hadoopとは何か、Hadoopがどう活用できるのかということを、「テキストマイニング」に焦点を当てて解説していきたいと思います。 重い処理を複数のマシンに分散させる 複数のマシンに処理を分散させるには、プロセス同士の通信、監視、障害時の対応などを考えなければならず、プログラマにとってハードルが高いものです。しかし、Hadoopはそういった面倒くさい処理を一手に引き受けてくれ、プログラマは、やりたい処理だけに集中できます。 例えば、Hadoopを使うと、1

    いまさら聞けないHadoopとテキストマイニング入門
  • 自然言語処理関係のブログ

    自然言語処理に関係するブログのリストを作ってみました。

    自然言語処理関係のブログ
  • 第1回にこにこテキストマイニング勉強会に参加しました #nicotextmining - nokunoの日記

    というわけで参加してきました。第1回 にこにこテキストマイニング勉強会 : ATND 目的テキストマイニングについての学習のスタートアップテキストマイニング技術に関して気軽に参加・議論することができる場の提供 概要テキストマイニングとは、例えば製品の評判をweb上のテキストから抽出したり、大量のアンケートテキストを分析するために用いられる技術であり、特にマーケティングの場で多くの利用例があります。この勉強会ではそうしたテキストマイニングを題材とし、用いられている要素技術とそれに関わる課題の議論、またテキストマイニングを実務に活かす方法について考えていきます。 会場のオラクルセミナールームでは隣でPythonハッカソンが行われており、そちらにも知り合いがいたり飲み物が無料だったりして居心地の良い場所が形成されていました(入るまでが大変でしたが‥)。Python Hack-a-thon 201

  • Igo-pythonの導入メモ

    Igoのサイトの手順そのままです。 準備 igo-0.4.2.jarの入手 辞書のダウンロードと展開 $ java -cp igo-0.4.2.jar net.reduls.igo.bin.BuildDic コンパイル済み辞書出力先 ダウンロードした辞書を展開したところ 辞書の文字セット$ java -cp igo-0.4.2.jar net.reduls.igo.bin.BuildDic ipadic mecab-ipadic-2.7.0-20070801 EUC-JP

    Igo-pythonの導入メモ
  • 統計的自然言語処理エンジンStaKK - nokunoの日記

    統計的自然言語処理エンジンStaKK を開発しました。nokuno’s stakk at master - GitHub 以下、READMEからの引用です。 現在の機能 かな漢字変換 予測変換 または サジェスト スペル訂正 形態素解析 HTTPによるAPIサーバ Trieの直接操作現在は、StaKK は辞書として Mozc (Google日本語入力のOSS版)のデータを使っています。 リバースモードについてStaKK はノーマルモードとリバースモードの2つのモードを持っています。 ノーマルモードでは、かなを入力し、単語(主に漢字)を出力します。 リバースモードでは、単語を入力し、読みや品詞を出力します。これらの2つのモードの応用例をまとめると、次の表のようになります。 機能 ノーマルモード リバースモード Convert かな漢字変換 形態素解析 Predict 予測変換 検索ワードのサ

  • Python による日本語自然言語処理

    はじめに この文書は、 Steven Bird, Ewan Klein, Edward Loper 著 萩原 正人、中山 敬広、水野 貴明 訳 『入門 自然言語処理』 O'Reilly Japan, 2010. の第12章「Python による日語自然言語処理」を、原書 Natural Language Processing with Python と同じ Creative Commons Attribution Noncommercial No Derivative Works 3.0 US License の下で公開するものです。 原書では主に英語を対象とした自然言語処理を取り扱っています。内容や考え方の多くは言語に依存しないものではありますが、単語の分かち書きをしない点や統語構造等の違いから、日語を対象とする場合、いくつか気をつけなければいけない点があります。日語を扱う場合にも

  • 1