タグ

algorithmとsvmに関するtakadoのブックマーク (6)

  • SVMの学習用アルゴリズムSMOを実装してみる - きしだのHatena

    SVMは2次最適化問題になるので、それを勉強してみてはということだったのですが、SVMに特化したSMO(Sequential Minimal Optimisation)アルゴリズムがあるということなので、そちらをやってみました。 SVMの制約条件に というのがあって、yiは正例なら1、負例なら-1となる値なのですが、そうすると、ようするにこの条件は、正例のαの合計と負例のαの合計が等しくなるということを示してるわけです。 この条件をつかうと、ひとつαを操作したときには、ほかのαを操作して、正例と負例のバランスを取る必要があることがわかります。 で、このことを利用して、同時に2つのαを操作することにすると、解析的に一つ目のαが求められて、2つ目のαはそこから足し算引き算で求められてお徳かも、というのがSMOの考え方です。 問題は、いかに効率よく更新する2つのαを決めるかということになります。

    SVMの学習用アルゴリズムSMOを実装してみる - きしだのHatena
  • しかしSVMも最近は速いらしい - 射撃しつつ前転 改

    Complement Naive BayesがSVMより速いよーと主張していたので、SVMもなんか最近は速くなってるらしいよ、という事を紹介してみたい。近年はSVMなどの学習を高速に行うという提案が行われており、実装が公開されているものもある。その中の一つにliblinearという機械学習ライブラリがある。ライブラリ名から推測できる通り、liblinearではカーネルを使うことが出来ない。しかし、その分速度が速く、大規模データに適用できるという利点がある。 liblinearを作っているのはlibsvmと同じ研究グループで、Chih-Jen Linがプロジェクトリーダーであるようだ。libsvmはかなり有名なライブラリで、liblinearにはそういった意味で安心感がある。(liblinearの方は公開されてしばらくは割とバグがあったらしいけど。) liblinearにはL1-SVM, L

    しかしSVMも最近は速いらしい - 射撃しつつ前転 改
  • 新はてなブックマークでも使われてるComplement Naive Bayesを解説するよ - 射撃しつつ前転 改

    新はてブ正式リリース記念ということで。もうリリースから何週間も経っちゃったけど。 新はてなブックマークではブックマークエントリをカテゴリへと自動で分類しているが、このカテゴリ分類に使われているアルゴリズムはComplement Naive Bayesらしい。今日はこのアルゴリズムについて紹介してみる。 Complement Naive Bayesは2003年のICMLでJ. Rennieらが提案した手法である。ICMLというのは、機械学習に関する(たぶん)最難関の学会で、採択率はここ数年は30%を切っている。2003は119/371で、32.1%の採択率だったようだ。 Complement Naive Bayesの位置づけは 実装が簡単 学習時間が短い 性能もそこそこよい という感じで、2003年段階にあっても、絶対的な性能ではSVMに負けていた。しかし、学習が早いというのは実アプリケーシ

    新はてなブックマークでも使われてるComplement Naive Bayesを解説するよ - 射撃しつつ前転 改
    takado
    takado 2008/12/18
    「カテゴリ推定など多値分類問題の場合に、補集合を使って学習することでデータ量のバラツキを少し抑える方法」
  • やる夫で学ぶSVM with R

    [DL輪読会] “Asymmetric Tri-training for Unsupervised Domain Adaptation (ICML2017...

    やる夫で学ぶSVM with R
  • Support Vector Machines

    Welcome to the website for the book Support Vector Machines. This is the first comprehensive introduction to Support Vector Machines (SVMs), a new generation learning system based on recent advances in statistical learning theory. SVMs deliver state-of-the-art performance in real-world applications such as text categorisation, hand-written character recognition, image classification, biosequences

  • 机上の空論:[メモ] サポートベクターマシン(SVM)

    サポートベクターマシン(以下 SVM) とは ・ニューラルネットワークの一種 ・教師ありクラスタリング SVM の基的な考え方 ・元々2クラスの線形分離手法として提案される ・単層パーセプトロンに似ているが、SVM はマージン最大化という手法をとっているのがポイント。 ・マージン最大化とは、超平面と学習データの隙間となるマージンをなるべく大きく取ろうというもの。 (ここでいう超平面とは、2つのクラスにぶった切る平面のこと) ・ちなみに超平面と、ちょうどマージンの分だけ離れている学習データをサポートベクトルという。 ・このマージン最大化という考えを取り入れることによって、テストデータの識別精度を高めている。 SVM の発展 ・線形分離不可能な問題への対応 - ソフトマージン(学習データが多少マージンにくい込んだり、反するクラスの空間にくい込んだりしても許す)で対応

    takado
    takado 2007/05/21
    SVMまとめ
  • 1