タグ

関連タグで絞り込む (1)

タグの絞り込みを解除

javaとmachine learningに関するtakuma510のブックマーク (2)

  • JavaCVで機械学習する

    OpenCV には機械学習の実装がいくつか(単純ベイズ、k 近傍、SVM、決定木…)用意されていて、画像処理に限らず汎用目的で便利に使うことができます。実装ごとにクラス化されていて、学習(train)→ 予想(predict)という似たようなメソッドが用意されているため、学習結果がイマイチなら他に切り替える、ということも比較的簡単にできるようです。 この便利な機能は、Java 版ラッパーである JavaCV にもポーティングされています。そこで、とりあえず 5 次元ベクトル群を 2 つのクラスに分類するコードを書いてみました。下の画像では、5 次元中 2 次元を可視化しています。他のパラメタで実行してみた画面キャプチャやコード全体は記事末尾にあります。JavaCV のインストールなどに関しては前の記事「OpenCVJava から使う」をどうぞ。 準備 // Parameters fo

    JavaCVで機械学習する
  • 試すのが難しい―機械学習の常識はMahoutで変わる

    ビッグデータ時代―なぜ、いま機械学習なのか Apache Hadoop(以下、Hadoop)の登場で、今まで捨てていたデータ、貯めるだけで処理しきれなかったデータを活用できるようになりました。 活用手段として最近とみに注目されている技術が「機械学習」であり、Hadoopの強みを生かし簡単に機械学習を行うためのライブラリが、「Apache Mahout」(以下、Mahout)です。 稿ではMahoutを動かしてみることで、機械学習の常識を身に付けます。 そもそも、機械学習とは? 機械学習とは、一定のデータをコンピュータ・プログラムに「学習」させ(すなわち、そのデータに潜むパターンや規則性を表す「モデル」を自動的に構築させ)、他のデータにそのモデルを適用すれば、あたかも人間のように複雑で柔軟な判断が行えるようにするという試みです。 機械学習をビジネスに活用した例は、レコメンド(ユーザーや商品

    試すのが難しい―機械学習の常識はMahoutで変わる
  • 1