タグ

Pythonとsvmに関するteddy-gのブックマーク (1)

  • SVM(RBFカーネル)のハイパーパラメータを変えると何が起こるの? - Qiita

    概要 SVM(Support Vector Machine)は分類精度の高い機械学習の手法として知られています. SVMでより高い分類精度を得るには, ハイパーパラメータを訓練データから決定する必要があります. この記事では, RBFカーネル(Gaussian カーネル)を用いたSVMのハイパーパラメータを調整することで, 決定境界がどのように変化するのかを解説します. 決めるべきハイパーパラメータ RBFカーネルを用いたSVMでは, 以下の2つのハイパーパラメータを調整します. コストパラメータ: $C$ RBFカーネルのパラメータ: $\gamma$ コストパラメータについて SVMは特徴空間に写像されたデータ点集合を分離する超平面を決定する手法です. しかし, 特徴空間上の点集合がいつも分離可能とは限りません. 例えば, 以下の図では二種類の記号を完璧に分割するような直線を引くことは

    SVM(RBFカーネル)のハイパーパラメータを変えると何が起こるの? - Qiita
    teddy-g
    teddy-g 2016/07/02
    PythonでSVMしてGammaとCost調整。Costはエラーの許容度だから境界線の引き方でしかないが、GammaはRBFでの掴み方?というかKernel Trickを何と言えば分かりやすくなるのか。
  • 1