タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

pythonとPythonとrandomforestに関するteddy-gのブックマーク (1)

  • Random Forestで計算できる特徴量の重要度 - なにメモ

    (pixabay.comより) 1.背景とか Random Forest[1]とは、ランダムさがもつ利点を活用し、大量に作った決定木を効率よく学習させるという機械学習手法の一種です。SVMなどの既存の手法に比べて、特徴量の重要度が学習とともに計算できること、学習が早いこと、過学習が起きにくいこと(追記注釈1)などの利点が挙げられます。Kinectの姿勢推定に使われているらしいです。 最近、Random Forestをカジュアルに使う例が多く(特にうちの研究室)、一部パラメータやら出力やらがわからない人も多いと思います。使い方はTJOさんの資料[2]を読んでもらえれば理解できると思うし、詳細は波部先生の資料[3]をよんでもらえればわかると思います。 それで、いろいろな日語の資料をいくら読んでも、Random Forestがもつ特徴の1つである、特徴量の重要度の詳細に関してはほとんどノータッ

    Random Forestで計算できる特徴量の重要度 - なにメモ
    teddy-g
    teddy-g 2017/03/26
    Random Forestの「寄与率」についてのざっくりとした説明。出来上がった森の内容を直接見るのではなく、森を使ってvalidationする感じ。
  • 1