タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

pythonとPythonとword2vecに関するteddy-gのブックマーク (3)

  • gensim入門 - Qiita

    手軽にトピック分析を実行できるgensimを知ったので、gensimを使用して簡単な文章をトピック分析するチュートリアルを実行してみました。 トピック分析、LDA、gensimとは 詳しく理解してはいないので、簡単に言うと、 トピック分析とは、大量の文章からいくつかのトピックを分類して、与えられた文章がどのトピックに属するかを分類する手法 LDAとは、トピック分析の1種 gensimとは、トピック分析を行うことができるPython製のソフトウェア gensimを使ったトピック分析は、以下の手順で行えるようです。 文章を準備 文章を単語ごとに分割、調整 辞書を作成 コーパスを作成 LDAモデルを作成 分類したい文章をLDAモデルで分類 前提 Docker Python 2環境を作るのが面倒だったのでDockerを使っているだけです。 $ docker version Client: Vers

    gensim入門 - Qiita
    teddy-g
    teddy-g 2018/02/18
    gensim使えば簡単に分析できるが その前にまず自分でやってみないと
  • Word2Vecを用いた類義語の抽出が上手く行ったので、分析をまとめてみた - Qiita

    はじめに こんにちは、Speeeでデータサイエンティストをしている@To_Murakamiと申します。エンジニアではないのですが、コーディングを含めた分析例を発信しようと思い、企業のAdvent Calendarに参加させていただきました。 12月も暮れに差し掛かってきましたね。日は、Word2Vec(ワードトゥベック)という自然言語処理を活用した分析例を紹介します。 このロジックを実装した目的は、ことばの表記ゆれ(類義語)発見器みたいなのを作ってみたいと思ったからです。なぜ、Word2Vecからことばの表記ゆれが分かるのでしょうか?仕組みの概要(下記)が分かると、理由を理解できます。 Word2Vecの仕組み(簡単に) Word2Vecとは言葉通り、単語をベクトル化したものです。ベクトル化した中身には当然数字が入ります。つまり、単語という言語データを数値化することができるのです! 数値

    Word2Vecを用いた類義語の抽出が上手く行ったので、分析をまとめてみた - Qiita
    teddy-g
    teddy-g 2018/02/18
    これも単語分散表現の話。Word2Vecの仕組みをわかりやすく書いてる。
  • Pythonで単語分散表現のクラスタリング - Ahogrammer

    最近の自然言語処理では、単語の分散表現は当たり前のように使われています。 単語分散表現では、各単語が高次元ベクトル空間に配置され、加減乗除等の演算を行えるようになります。 これらのベクトルは、意味の近い単語に対しては同じようなベクトルになることがわかっています。 記事では、単語分散表現のベクトルをクラスタリングし、意味が近い単語のクラスタを作ってみたいと思います。 これらのクラスタは、眺めて楽しむだけでなく、機械学習の素性として使うこともできます。 イメージ的には、以下のような感じで単語をクラスタにまとめます。 では、単語分散表現をクラスタリングして、単語のクラスタを作ってみましょう。 準備 まずは、作業用のディレクトリを作成しておきましょう。 また、必要に応じて Python の仮想環境も用意します。 以下のコマンドを実行することで、ディレクトリを用意します。 $ mkdir work

    Pythonで単語分散表現のクラスタリング - Ahogrammer
    teddy-g
    teddy-g 2018/02/18
    単語分散表現は色々とやってみたいがなかなか時間が取れない
  • 1