タグ

Knowledge Distillationに関するtnalのブックマーク (2)

  • Deep Learningにおける知識の蒸留 | Code Craft House

    ここ数年のDeep Learningの発展は目覚ましく、急速に実用化が進んでいます。タスクによっては人間に匹敵する精度に達しているものもあり、システムの一部品としてデプロイする場面も増えてくると思います。そこで問題になるのが計算機資源の制約です。学習時には大量の学習データを用意し、GPUなどの計算資源で数時間や数日かかるような学習をしますが、推論時には限られたメモリや計算資源のもとで動作させる必要があります。リアルタイムに大量の入力データを捌く必要があったり、スマートフォンやエッジデバイスなどで動作させる場合には、この制約はさらに強くなります。 深くて大きいモデルの方が精度が出るが、実用を考えると軽量なモデルにする必要がある。こういった場面で最近よく使われる手法として、 知識の蒸留 (Knowledge Distillation) と呼ばれる方法があります。これは、(典型的には)大きくて複

  • 転移学習:機械学習の次のフロンティアへの招待 - Qiita

    機械学習を実務で使う場合、「ではお客様、ラベルデータを・・・」と申し出て色よい返事が返ってくることはあまりありません。また、例えば自動運転車を作るときに、データが足りないからその辺流してくるか、お前ボンネットに立ってデータとってな、とするのは大変です。 NICO Touches the Walls 『まっすぐなうた』 より そこで必要になってくるのが転移学習です。 転移学習とは、端的に言えばある領域で学習させたモデルを、別の領域に適応させる技術です。具体的には、広くデータが手に入る領域で学習させたモデルを少ないデータしかない領域に適応させたり、シミュレーター環境で学習させたモデルを現実に適応させたりする技術です。これにより、少ないデータしかない領域でのモデル構築や、ボンネットに立つという危険を侵さずにモデルを構築することができるというわけです。 この転移学習の可能性は、NIPS 2016

    転移学習:機械学習の次のフロンティアへの招待 - Qiita
  • 1