タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

PythonとSciPyとPRMLに関するtnalのブックマーク (2)

  • Pythonによるモンテカルロ法入門 - 人工知能に関する断創録

    PRMLの11章で出てくるマルコフ連鎖モンテカルロ法(Markov chain Monte Carlo methods: MCMC)。ベイズでは必須と呼ばれる手法だけれどいまいち理屈もありがたみもよくわからなくて読み飛ばしていました。 最近、ボルツマンマシンを勉強していて、ベイズと関係ないのにマルコフ連鎖やらギブスサンプラーやらが出てきて格的にわからなくなってきたのでここらで気合を入れて勉強し直すことにしました。 参考にした書籍は「Rによるモンテカルロ法入門」です。PRMLと同じく黄色いなので難易度が高そう・・・このはR言語を使って説明がされていますが、それをPythonで実装しなおしてみようかなーと計画中。numpy、scipyの知らなかった機能をたくさん使うので勉強になりそう。 ただRにしかないパッケージを使われると途中で挫折する可能性が高い・・・あと内容が難しすぎて途中で挫折す

    Pythonによるモンテカルロ法入門 - 人工知能に関する断創録
  • 共役勾配法によるロジスティック回帰のパラメータ推定 - 人工知能に関する断創録

    Courseraの機械学習ネタの続き。今回はロジスティック回帰をやってみます。回帰と付くのになぜか分類のアルゴリズム。以前、PRMLの数式をベースにロジスティック回帰(2010/4/30)を書いたけど今回はもっとシンプル。以下の3つの順にやってみたいと思います。 勾配降下法によるパラメータ最適化 共役勾配法(2014/4/14)によるパラメータ最適化(学習率いらない!速い!) 正則化項の導入と非線形分離 ロジスティック回帰は線形分離だけだと思ってたのだけど、データの高次の項を追加することで非線形分離もできるのか・・・ 使用したデータファイルなどはGithubにあります。 https://github.com/sylvan5/PRML/tree/master/ch4 勾配降下法によるパラメータ最適化 2クラスのロジスティック回帰は、y=0(負例)またはy=1(正例)を分類するタスク。ロジステ

    共役勾配法によるロジスティック回帰のパラメータ推定 - 人工知能に関する断創録
  • 1