タグ

関連タグで絞り込む (1)

タグの絞り込みを解除

algorithmとaiに関するtsimoのブックマーク (2)

  • DO++: 機械学習による自然言語処理チュートリアル

    自然言語処理のときに使う機械学習手法のテクニックをざーっと2時間程度で紹介してほしいとのことだったので今日話してきました。基的に、そんなに頑張らなくても効果が大きいものを中心に説明(特にパーセプトロンとか)を説明してます。 紹介した手法はパーセプトロン、最大エントロピー、正則化、多クラス分類、系列分類(CRF, Structured Perceptron)などなどです。どれも一かじりする感じで網羅的に見る方を優先してます。個々の詳しい話はそれぞれの文献や実装などを当たってみてください。 スライド [ppt] [pdf] ここで話しているのは線形識別モデルの教師有り学習が中心で教師無し学習(クラスタリングなど)など他の自然言語処理を支える技術は省いてます。 こういうのを使って(使わなくてもいいけど)どんどんアプリケーション作らないといかんね。 Tarot is not used to ma

    DO++: 機械学習による自然言語処理チュートリアル
  • データから「構造」を発見する:より人間に近づく人工知能 | WIRED VISION

    データから「構造」を発見する:より人間に近づく人工知能 2008年7月31日 サイエンス・テクノロジー コメント: トラックバック (1) Brandon Keim 生物学者のエルンスト・ヘッケルが作成した系統樹(現在は不正確だとされている)。 Image: WikiMedia Commons コンピューターがより人間らしく考えるのに役立つかもしれない、ある新しいパターン認識モデルが登場した。 7月28日(米国時間)刊行の『米国科学アカデミー紀要』(PNAS)に掲載されたこのモデルは、生のデータセットから出現する見込みが最も高いパターンの種類を判断する。 こうした処理は、人間が周囲の世界を理解する際に無意識のうちに使っているものだが、人工的な認識ツールでは一般に難しいとされてきた。 顔認識や系統学などに使われている現行の諸モデルでは、予想されるパターンの型があらかじめ特定されている必要があ

  • 1