データマイニングは、最も当てはまりの良い回帰式を恣意的に拾い上げる慣行につながるという点で経済学では評判が悪いが、正しく使えば有用、とオックスフォード大の2人の研究者(Jennifer L. Castle、David F. Hendry)がこちらのvoxeu記事に書いている(H/T Economist's View)*1。 記事ではまず、最も単純なデータマイニング手法として、有意性の高い順に説明変数を一つずつ追加していく、という手法を挙げている。そうした1-step forward search algorithmsと呼ばれる手法は、非有意になった変数の除去と組み合わせたり(=段階的回帰[stepwise regression];別名unwise regression)、推計された係数の大きさに制約を掛けたり(=Lasso)、といったバリエーションがあるが、経済学ではまず上手く行かない、と