Explore courses developed by Google Cloud and find the right program for you. Develop in-demand skills with industry expert-led lessons.

コンテンツブロックが有効であることを検知しました。 このサイトを利用するには、コンテンツブロック機能(広告ブロック機能を持つ拡張機能等)を無効にしてページを再読み込みしてください。 ✕
Deep Learningが人工知能の裾野を拡大。ビジネス、社会、エンジニアはどう変わるのか?:特集:「人工知能」入門(1) 「アクションを起こすスピード」「イノベーティブな製品・サービス」が企業競争力の源泉になりつつある中で、人工知能が今あらためて大きな注目を集めている。では、人工知能とはどのようなもので、どのようなインパクトをもたらすのか? 事例やインタビューを通じて明らかにする。 ビッグデータ/IoT、FinTechトレンドの中、再び注目されている人工知能 近年、激しい市場環境変化の中で、ビジネス展開の「スピード」が差別化の一大要件となっている。また企業・個人を問わずニーズが多様化している今、従来のように「顕在ニーズを見定めて、時間をかけて製品・サービスを開発・リリースするやり方」だけではニーズに対応することも難しくなった。FinTechトレンドで顕著なように、大量データから潜在・顕
ニューラルネットワークは複雑な非線形問題を解決する可能性を提供してくれるもので、信号の分類や時系列的な予測、パターン認識など様々な領域で利用できます。ニューラルネットワークは人間の脳から着想を得たモデルで、接続された複数のニューロンから構成されます。ネットワークには入力ニューロンの層(情報が入ってくるところ)と出力ニューロンの層(結果が得られるところ)、そしてその間にある「隠れ層」と呼ばれるいくつかの層があります。 より深い理解のために、 Neural Networks and Deep Learning をチェックすることをお勧めします。 ここ数年、ニューラルネットワークを色々な目的のために作成・訓練・利用する助けになるJavaScriptフレームワークがいくつも開発されました。このブログ記事では、画像の分類のためにネットワークをセットアップする方法を学んでいきます。 ニューラルネットワ
朱鷺の杜Wiki(ときのもり うぃき)† 朱鷺の杜Wikiは,機械学習に関連した,データマイニング,情報理論,計算論的学習理論,統計,統計物理についての情報交換の場です.これら機械学習関係の話題,リンク,関連事項,書籍・論文紹介などの情報を扱います. 更新されたページを確認するにはRSSリーダを使って右下のRSSリンクをチェックするか,最終更新のページを参照してください. ページの中でどこが更新されたかを見るには,上の「差分」をクリックして下さい. 数式の表示に MathJax を利用しています.数式の上でコンテキストメニューを使うと各種の設定が可能です.特に設定をしなくても数式は閲覧できますが,フォントをインストールすれば数式の表示がきれいで高速になります.詳しくは 数式の表示 のページを参照して下さい. ごく簡単なWikiの使い方がこのページの最後にあります.トップページやメニューなど
Amazon.comはディープラーニングを実現するライブラリ「Amazon DSSTNE」(Deep Scalable Sparse Tensor Network Engineの頭文字、読みはデスティニー)をオープンソースで公開しました。 GitHub - amznlabs/amazon-dsstne: Deep Scalable Sparse Tensor Network Engine (DSSTNE) is an Amazon developed library for building Deep Learning (DL) machine learning (ML) models DSSTNEは本番環境のワークロードに対応したライブラリで、以下の特長があります。 マルチGPUスケール 学習と予測のどちらも、複数のGPUにスケールアウトし、レイヤごとにモデル並列化の方法で(model-
Home Downloading and installing Weka Downloading and installing Weka Requirements Documentation Getting help Citing Weka Literature Development History Resources There are two versions of Weka: Weka 3.8 is the latest stable version and Weka 3.9 is the development version. New releases of these two versions are normally made once or twice a year. The stable version receives only bug fixes and featu
人物紹介:うらら LIGブログDevRelチャンネル担当のエディター。テクニカルエディターを目指し、プログラミングやIoTについて鋭意勉強中。最近ハマっているのはUnity。 森の中から失礼します。ちょっと調べものをしていまして……。 先週からLIGブログの編集部一同で「調べてみた」連載を始めました。私は毎週日曜に記事を出すことに。せっかくの日曜なので、IoTやテクノロジーで “日曜大工” をしてみたいと思います。 今週のテーマとして取り上げたのは機械学習。これは機械が自分で学習する技術のことです。機械に仕事を任せてサボりたい技術的にとても面白そうだったので、調べてみました。 そもそも機械学習って何? 機械学習(machine learning)とは、簡単に言うと「機械(コンピューター)にたくさんのデータを読み込ませ、解析することでアルゴリズムを作ること」です。最大の長所は、人の手でデータ
連載目次 最近注目を浴びることが多くなった「Deep Learning(ディープラーニング)」と、それを用いた画像に関する施策周りの実装・事例について、リクルートグループにおける実際の開発経験を基に解説していく本連載。前回の「ニューラルネットワーク、Deep Learning、Convolutional Neural Netの基礎知識と活用例、主なDeep Learningフレームワーク6選」では、ニューラルネットワーク、Deep Learning、Convolutional Neural Netの基礎知識と活用例、主なDeep Learningフレームワークを紹介しました。今回は、リクルートグループで画像解析において積極的に利用しているフレームワーク「Caffe」を中心にDeep Learningを利用した画像解析について解説します。 最初に、画像解析で実施している「物体認識」の概要を紹
In my advanced compilers course, students have write to lexer-generators, parser-generators and Scheme interpreters with first-class macros. To make these projects feasible, I recommend using Scala. Of course, Scala is a large, intricate language. It takes time to even become aware of all its features. To help learn Scala faster, I've created the series of small examples below, each of which highl
続・TensorFlowでのDeep Learningによるアイドルの顔識別 - すぎゃーんメモ の続き、というかなんというか。 前回までは「ももいろクローバーZのメンバー5人の顔を識別する」というお題でやっていたけど、対象をより広範囲に拡大してみる。 様々なアイドル、応援アプリによる自撮り投稿 あまり知られていないかもしれないけど、世の中にはものすごい数のアイドルが存在しており、毎日どこかで誰かがステージに立ち 歌って踊って頑張っている。まだまだ知名度は低くても、年間何百という頻度でライブを中心に活動している、所謂「ライブアイドル」。俗に「地下アイドル」と言ったりする。 ライブアイドル - Wikipedia そういったアイドルさんたち 活動方針も様々だけど、大抵の子たちはブログやTwitterを中心としてWebメディアも活用して積極的に情報や近況を発信していたりする。 そんな中、近年登
Integrate with the tools you already use Learn about integrations with Templafy, systems we integrate with, and how to build custom integrations connected to Templafy’s API. Download: The 2022 Content is Everything Report We surveyed 2,000+ global workers to learn how companies are reacting to massive shifts in content creation, distribution, and compliance Grow your business as a Templafy Partner
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く