タグ

ブックマーク / tech.preferred.jp (6)

  • 分散深層強化学習でロボット制御 - Preferred Networks Research & Development

    新入社員の松元です。はじめまして。 “分散深層強化学習”の技術デモを作成し、公開いたしました。ロボットカーが0から動作を学習していきます! まずはこの動画を御覧ください。 以下で、動画の見どころと、使っている技術を紹介します。 動画の見どころ Car 0(○の付いている車)が右折カーブの手前で減速する様子(右画面の白いバーのところが、ブレーキのところで赤くなっている。ニューラルネットはブレーキが最も多く報酬が得られると推測していることがわかる)。速い速度ほど報酬は大きいが、カーブを曲がりきれず壁にぶつかってしまうので学習が進むとカーブ手前でのみ減速するようになる。 目の前に車がいるときは一時停止して、いなくなってから加速する。 エチオピアには当にこのような交差点があるらしい。 ぎりぎりですれ違う2台。学習途中ではすれ違いきれずにぶつかって倒れてしまうこともある(早送りシーン中に人が写って

    分散深層強化学習でロボット制御 - Preferred Networks Research & Development
    um-mtt
    um-mtt 2016/01/26
  • CES2016でロボットカーのデモを展示してきました - Preferred Networks Research & Development

    こんにちは。Preferred Networksの自動運転チームです。 PFNは、2016年1月6日〜1月9日にアメリカのラスベガスで開催されたCES 2016でロボットの学習による自動走行のデモを行いました。これはPreferred Networksとトヨタ自動車様、NTT様との共同展示です。展示はトヨタ自動車様のブースの一部で行われました。 このブログではその中でどのような技術が使われているのかについて簡単に解説します。 背景 人工知能(強化学習)による自動走行は人工知能の黎明期よりとりくまれており,ロボットカーの自動走行などが60年代頃から試行されていました。 ルールベースやプログラムでも走行できますが、なぜ学習が必要なのでしょうか? 実際の交通環境、特に市街地の交通環境は非常に複雑であり、全てのパターンをあらかじめ列挙し、それに対する制御を漏れ無く書き表すのは困難です。一説には交差

    CES2016でロボットカーのデモを展示してきました - Preferred Networks Research & Development
    um-mtt
    um-mtt 2016/01/26
  • 異常検知の世界へようこそ - Preferred Networks Research & Development

    比戸です。 先週Jubatusの最新0.4.0がリリースされましたが、外れ値検知機能の追加が目玉の一つとなっています(jubaanomaly)。昨年PFIへ入社して初めて手がけた仕事が公開されたということで感慨ひとしおですが、便乗してあまり語られることのない異常検知の世界について書きたいと思います。以下の資料は昨年のFIT2012で使ったものです。 異常検知とは簡単にいえば、「他に比べて変なデータを見つけ出す」タスクです。お正月にテレビで繰り返し流れた、おすぎとピーコのCM(*1)がわかりやすいイメージですね。機械学習の枠組みで言えば”教師無し学習”に属します。分類や回帰、クラスタリングなど応用も多く人気も研究熱も高いタスクに比べると、マイナーです。SVMとか、Random Forestとか、Boostingとか、最近だとDeep Neural Networkとか、有名な必殺技アルゴリズム

    異常検知の世界へようこそ - Preferred Networks Research & Development
    um-mtt
    um-mtt 2016/01/19
  • Chainer Meetup #01 を開催しました - Preferred Networks Research & Development

    あけましておめでとうございます!PFI舛岡です。12/19にChainer Meetup #01@スマートニュースを行いました。 参加の倍率が1.8倍と参加するだけでも大変なイベントのようでした。 (ちなみに弊社社員P氏は抽選で落選しました) また参加率も90%以上でとても大盛り上がりのイベントでした。 会場をご提供くださったスマートニュース株式会社、会場を準備してくださった@tkngさんありがとうございます! イベントの様子はtogetterにまとめております。 イベント概要 今回のイベントのテーマを以下の様に設定しました。 Chainerとはなにか? Cupyとはなにか? Chainerはどのように使われているか? Chainerの開発はどうなっていくのか? Chainerの開発を手伝うにはどうすればいいのか? Chainer開発者全員と、Chainerをサービスに使っている担当者の方

    Chainer Meetup #01 を開催しました - Preferred Networks Research & Development
    um-mtt
    um-mtt 2016/01/05
  • Deep Learningと音声認識 - Preferred Networks Research & Development

    西鳥羽です。こんにちは。 日セミナーで「Deep Learningと音声認識」という内容で(ustreamで公開されているけども)社内セミナーで紹介させて頂きました。タイトルは前回の「Deep Learningと自然言語処理」に被せてます。 Broadcast live streaming video on Ustream こちらがその資料になります。尚、セミナーでは「話し言葉コーパス」とすべきところを「書き言葉コーパス」としてしまっていました。資料では訂正してあります。

    Deep Learningと音声認識 - Preferred Networks Research & Development
  • 機械学習CROSSをオーガナイズしました - Preferred Networks Research & Development

    もう豆まきしましたか?比戸です。 1月17日に、エンジニアサポートCROSSで機械学習のセッションをオーナーとして主催させて頂きました。今回はその報告と内容のまとめをさせて頂きます。 エンジニアサポートCROSSは今年で3回目を迎える、主にWeb系のエンジニアが集まる技術イベントで、今年も800人以上が集まったそうです。すごいですね。 並列開催されるパネルディスカッションを基とするイベントで、有名なWeb関連サービスを持っているわけではないPFIの私がオーナーということで、持てる人脈をフル活用してパネリストをお願いしたところ、お声がけした方全員にご登壇いただけることになりました。 Yahoo!JAPAN研究所 田島さん 楽天技術研究所 平手さん ALBERT 小宮さん FFRI 村上さん 産総研 油井さん Gunosy 福島さん 大手Web企業から尖ったサービスの会社、アカデミア周辺まで

    機械学習CROSSをオーガナイズしました - Preferred Networks Research & Development
  • 1