はじめに本ブログシリーズでは、Yahoo!ショッピングのデータ分析基盤を最適化するために取り組んだ大規模プロジェクト――Apache HiveからTrinoとApache Sparkへの移行――につい...

Best practices for performance tuning AWS Glue for Apache Spark jobs Roman Myers, Takashi Onikura, and Noritaka Sekiyama, Amazon Web Services (AWS) December 2023 (document history) AWS Glue provides different options for tuning performance. This guide defines key topics for tuning AWS Glue for Apache Spark. It then provides a baseline strategy for you to follow when tuning these AWS Glue for Apach
Amazon Web Services ブログ Deequ で大規模なデータ品質をテスト 一般的に、コード用のユニットテストを書くと思いますが、お使いのデータもテストしているのでしょうか? 不正確または不正なデータは、本番システムに大きな影響を与える可能性があります。データ品質問題の例は次のとおりです。 値がない場合は、本番システムで null 以外の値を必要とするエラー (NullPointerException) が発生する可能性があります。 データ分布が変化すると、機械学習モデルで予期しない出力につながることがあります。 データの集計を誤ると、ビジネスでの判断を下す際に誤った意思決定につながる可能性があります。 このブログ記事では、Amazon で開発し、使用されているオープンソースツールである Deequ を紹介したいと思います。Deequ では、データセットのデータ品質メトリクス
Apache Spark 3.1 Release: Spark on Kubernetes is now Generally Available With the Apache Spark 3.1 release in March 2021, the Spark on Kubernetes project is now officially declared as production-ready and Generally Available. This is the achievement of 3 years of booming community contribution and adoption of the project – since initial support for Spark-on-Kubernetes was added in Spark 2.3 (Febru
IntroductionESG research found that 43% of respondents considering cloud as their primary deployment for Apache Spark. And it makes a lot of sense because the cloud provides scalability, reliability, availability, and massive economies of scale. Another strong selling point of cloud deployment is a low barrier of entry in the form of managed services. Each one of the ‘Big Three’ cloud providers co
Amazon Web Services ブログ AWS GlueでApache Sparkジョブをスケーリングし、データをパーティション分割するためのベストプラクティス AWS GlueはApache Spark ETLジョブでのデータ分析・データ処理を行うために、様々なデータソースから大量のデータセットを準備(抽出および変換)し、ロードするサーバーレスな環境を提供します。この投稿のシリーズでは、Apache SparkアプリケーションとGlueのETLジョブの開発者、ビッグデータアーキテクト、データエンジニア、およびビジネスアナリストが、AWS Glue上で実行するデータ処理のジョブを自動的にスケールするのに役に立つベストプラクティスについて説明します。 まず最初の投稿では、データ処理を行うジョブのスケーリングを管理する上で重要な2つのAWS Glueの機能について説明します。1つ目は、
The document discusses Spark internals and provides an overview of key components such as the Spark code base size and growth over time, core developers, Scala basics used in Spark, RDDs, tasks, caching/block management, and schedulers for running Spark on clusters including Mesos and YARN. It also includes tips for using IntelliJ IDEA to work with Spark's Scala code base.
This document discusses messaging queues and platforms. It begins with an introduction to messaging queues and their core components. It then provides a table comparing 8 popular open source messaging platforms: Apache Kafka, ActiveMQ, RabbitMQ, NATS, NSQ, Redis, ZeroMQ, and Nanomsg. The document discusses using Apache Kafka for streaming and integration with Google Pub/Sub, Dataflow, and BigQuery
SparkのRDDとcontextを共有するために Livy Spark REST Job Server APIを使用する方法 Published on 12 February 2016 in Hue 3.10 / Programming / Spark / Tutorial - 4 minutes read - Last modified on 04 February 2020 (元のブログ記事はこちらです) Livyは任意の場所からApache Sparkを使用するためのオープンソースのRESTインターフェースです。LivyはローカルまたはYARNで実行される、Spark ContextのPython, Scala, Rのコード、あるいはプログラムのスニペットの実行をサポートしています。 エピソード1では、対話的なシェルAPIの使用方法を以前に説明しました 。 このフォローアップでは、
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く