Generative AI improvements are increasingly being made through data curation and collection — not architectural — improvements. Big Tech has an advantage.
This document discusses scalable machine learning using Apache Hadoop and Apache Mahout. It describes what scalable machine learning means in the context of large datasets, provides examples of common machine learning use cases like search and recommendations, and outlines approaches for scaling machine learning algorithms using Hadoop. It also describes the capabilities of the Apache Mahout machi
ヤフーが日本独自の検索関連サービスの開発で、オープンソースの分散処理ソフトである「Hadoop」の活用を進めている。Hadoopを使うことで、従来は6時間以上かかった処理がわずか5分半で済むようになった例もある。2009年秋には組織を整備し、適用範囲を全社に広げている。 Hadoopは、米グーグルが開発した分散処理ソフト「Google File System(GFS)」と「MapReduce」を模したオープンソースソフトである(図)。GFSとMapReduceは、グーグルのクラウドを支える基盤技術。Hadoopを使うと、複数台の安価なPCサーバーを連携させ、数十テラ~数ペタバイトに及ぶデ ータを高速に処理できる。 Hadoopを日本国内で最も積極的に利用している企業はヤフーだ。2008年ごろから部署単位でHadoopの導入を進め、Hadoopを使う事例が10件を超えるようになった(表)。
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く