Welcome back to TechCrunch’s Week in Review — TechCrunch’s newsletter recapping the week’s biggest news. Want it in your inbox every Saturday? Sign up here. Over the past eight years,…
2012年度が始まり1ヶ月が経ちました。2011年度は、大規模分散処理技術・データ基盤の普及が広く進んだ年だったと思います。2012年はそれら蓄積された大規模データを活用しデータマイニング・機械学習を用い、ビジネス・サービス洗練を大きく広げていく年ではないでしょうか。 Mahoutは 大規模分散データマイニング・機械学習のライブラリです。ApacheプロジェクトのOpen Sourceで、Hadoop上で動作しデータマイニング・機械学習の大規模分散実行を行うことができます。 Apache Mahout 大規模分散 データマイニング・機械学習を実行できる Mahout ですが、まだ「ドキュメント整備が発展途上で詳細を知るためにはソースコードから読み解く」必要がある場合が多く、また、活用には「対象とするデータマイニング・機械学習の基礎知識」が必要なため、まだまだ活用の敷居が高いのが現状ではない
Apache Mahout は、Hadoop上で動作する大規模分散データマイニング・機械学習のライブラリ。 Random Forest は大規模データで高精度の分類・判別を実現するアルゴリズム。 Random Forestを、"R言語での実行のように容易"に "大規模分散 学習・判別"できるように、 Mahout を用いた各種 Driver を実装しました。 以下に実行方法、実装を紹介します。 org.mahoutjp.df.ForestDriver Random Forest の分散学習から、分散判別、判別結果出力、および、精度評価まで行う Driver。 org.mahoutjp.df.ForestClassificationDriver 生成された Forest Modelを用いて、分散判別、判別結果出力、および、精度評価まで行う Driver。 両 Driver とも、1コマンドで
Hadoop上で動作する 大規模データマイニング・機械学習ライブラリ Apache Mahout に関し、技術情報まとめ・発信よる活用の裾野を広げることを目的としMahout JPを立ち上げました。 私も含め TokyoWebminingでMahoutに関する各種講師をしていたメンバーや、Tokyo.R、PRML会のメンバー含め、各業界のデータマイニング・機械学習で活動してきたメンバーで集まり、Mahoutに関する情報まとめ・発信をしていきます。 Mahout JP -Effective Applications of Apache Mahout in Japan- #MahoutJP 現在、Mahout はドキュメントがまだ整備されていなく、唯一ある書籍 Mahout in Actionでも情報が限られているため、実際に活用しようとするとソースコードから読み込む必要がある状態です。今回、
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く