タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

programmingとalgorithmとmathに関するwhaleboneのブックマーク (4)

  • 曲線あてはめ - Wikipedia

    曲線あてはめ(きょくせんあてはめ)またはカーブフィッティング(英: curve fitting)[1][2][3][4]は、実験的に得られたデータまたは制約条件に最もよく当てはまるような曲線を求めること。最良あてはめ、曲線回帰とも。一般に内挿や回帰分析を用いる。場合によっては外挿も用いる。回帰分析で曲線を求める場合、その曲線はデータ点を必ず通るわけではなく、曲線とデータ点群の距離が最小になるようにする。曲線あてはめによって得られた曲線を、近似曲線という。特に回帰分析を用いた場合には回帰曲線という。現実の実験データは直線的ではないことが多いため散布図、近似曲線を求める必要性は高い。 我々が考えるべき問題は、実験データを実験を説明する「説明変数」と「目的変数」に分類した上で、説明変数 と、目的変数yの関係 を求めることである。説明変数としては測定条件を考えることが多く、目的変数としては、測定値

    曲線あてはめ - Wikipedia
  • 平面幾何におけるベクトル演算

    ここでは,ACM/ICPC頻出の平面幾何について,基的なベクトル演算を解説します。 最後にライブラリとしてソースコードを載せているので番では印刷して持っておくとよいでしょう。 ベクトルの基礎 デカルト座標系とユークリッド空間 スカラーとベクトル 点とベクトル ベクトルの和と差 ベクトルの利用 complex型の導入 絶対値,2点間の距離,単位ベクトル 法線ベクトル,単位法線ベクトル 内積と外積 内積・外積 2直線の直交判定・平行判定 点が線上にあるかないかの判定 直線と線分 直線と点の距離 線分と点の距離 線分の交差判定 線分の交点計算 直線の交点計算 ソースコード $Id: index.shtml 1825 2007-09-23 00:35:10Z SYSTEM $

  • 技術計算用Cプログラム ソース

    注意事項(著作権ほか)( General Note ; Copyright, etc.) Q&A(使用上のヒント) 作成者 : Tomy           作成日 : 平成8年10月15日 Author : Tomy       Creation Date : Oct. 15th. 1996 最終修正日 : 平成17年11月4日 Last Alteration : Nov. 4th. 2005 完成度( Completion ) : 60%

  • 端数処理 - Wikipedia

    丸めは任意の丸め幅に対し可能だが、以下では特に断らない限り、丸め幅を1とする(後段の「#例」では、丸め幅は0.1である)。任意の丸め幅で丸めるには、丸める前に丸め幅で割り、丸めた後に丸め幅をかける。 主に正数について述べるが、負数についても適宜述べる。 整数部分をそのまま残し、小数点以下を0とする丸めを「切り捨て」という。それに対し、小数点以下が0でなかった場合整数部分を1増やし、小数点以下を0とする丸めを「切り上げ」という。 負の数を考えると、「切り捨て」「切り上げ」に準ずる丸めは、4種類ある。それぞれ「○○への丸め」と呼ばれる。 符号を無視して絶対値を丸める場合、「切り捨て」は常に0へ近づく(または変わらない。以下では省略)ので「0への丸め (rounding toward zero; RZ)」、「切り上げ」は常に数直線上の無限遠点へ近づくので「無限大への丸め (rounding to

    端数処理 - Wikipedia
  • 1