You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
動機付けと問題 計算機の内部では二進浮動小数点数が使われることが多い一方で、プログラムのソースコードやテキストベースのデータ形式(例:JSON)では十進小数が使われることが多い。 データのシリアライズ等で、内部的な二進浮動小数点数を十進小数に変換して、再度二進小数に戻すという操作が考えられる。この時、元々の二進小数の値が保持されることが望ましい。 有限桁の二進小数は原理的には有限桁の十進小数で表現できるが、指数部が大きかったり小さかったりすると仮数部の桁数も膨張するため実用的ではない。 そこで、基数変換の際に丸めが発生することを許容して、二進小数→十進小数→二進小数の変換が恒等写像となるようにしたい。ただし丸めの方法は最近接丸めであるとする。この時、 途中の十進小数の仮数部は何桁あれば十分か?なるべく短い桁数の十進小数を、正しい丸めで得るためのアルゴリズムはどのようなものか? という問題が
さいきん『浮動小数点数小話』という同人誌を読んでFMA (Fused Multiply-Add)の二段階丸め誤差(double rounding error)について色々と知る機会があったのでまとめておく。ついでにFMAに関するOpenJDKのバグっぽい挙動を見つけたのでそれも併せて記しておく。 FMA (Fused Multiply-Add)とは FMAは以下のような演算のことを呼ぶ。 この演算自体は行列の乗算やベクトルの内積の計算でよく現れるものであるが、通常の浮動小数点数の乗算と加算を別々に行うと誤差が出るので一度の演算で正確な値を算出したいときに用いる。たとえばC言語(C99)では fma、fmaf、fmalという3つの関数が導入されているらしい。 FMAの実装における二段階丸め誤差 FMAはターゲットとなるCPUのアーキテクチャがFMA命令をサポートしていればその命令を直接呼び出
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く