2014年11月13日開催の全脳アーキテクチャ若手の会 第3回Deep Learning勉強会の資料です。RBMの動作原理をポイントを押さえて解説しました。参考資料を後ろに纏めましたのでご自由にご活用ください。

Deep learning has become something of a buzzword in recent years with the explosion of 'big data', 'data science', and their derivatives mentioned in the media. Justifiably, deep learning approaches have recently blown other state-of-the-art machine learning methods out of the water for standardized problems such as the MNIST handwritten digits dataset. My goal is to give you a layman understandin
Deep Learningで用いられるらしいということで, Restricted Boltzmann Machine(RBM)について調べたので概要とPythonによる実装例をまとめた. 主にAn Introduction to Restricted Boltzmann Machinesを参考にしているので, 数式の詳細はそちらをあたって欲しい. 概要 Restricted Boltzmann Machineは分布をモデル化するアルゴリズム. 目的は, 与えられた観測変数の集合からその確率分布を求めることだ. RBMでは観測変数の他に隠れ変数を導入する. そして, を求めたのち, 周辺化によってを求める. RBMではは次のように表される. ただし, . Eはエネルギーと呼ばれるもので, エネルギーが小さい状態程起こる確率は高くなる. 水は低きに流れる的な精神. また, の3つはこのモデルの
前回、前々回とそれぞれロジスティック回帰(Logistic Regression)、制約付きボルツマンマシン(Restricted Boltzmann Machine, RBM)を紹介しました。 手法の説明については、各記事を参照してください。 今回は、これら2つを組み合わせて実装されている Deep Belief Nets (DBN) について紹介します。今回のコードは長いので、記事の最後の方に載せています。 DBNは Greedy Layer-Wise Training of Deep Networks [Bengio 2007] で提案されている手法ですが、こちらがDeep Learningのパイオニアと言っても過言ではありません。 DBNは多層ニューラルネットワークの形をしています。従来の研究では、多層にするほど精度が下がるという問題が指摘されていましたが(多層のため誤差の重みが少
近年の機械学習ではDeep Learningと呼ばれる分野が一世を風靡しています.コンピュータビジョンや自然言語処理,音声認識などの分野では何らかの問題を解こうとした際に,まず対象の入力データからSIFTやケプストラムといった何らかのアルゴリズムを用いて特徴ベクトルを抽出し,ごりごりと判別していくといった流れが一般的です.しかし,その特徴ベクトルを生成するという生のデータから本質となる部分を抽出するアルゴリズム自体は研究者が一生懸命考えながら作るのが普通でした. Deep Learningの分野で最も有名な手法の一つであるDeep Belief Nets(DBN) [Hinton06]は,研究者がアルゴリズムを作るのではなく,それ自体も機械学習にやらせましょうという動機で生まれたアルゴリズムです.DBNではまるで一昔前にやたら流行ったニューラルネットワークのように各ノードを層状に配置し,そ
In the previous post I explained the basic structure of an RBM. In this post I will explain the algorithm that is typically used to find the weights for an RBM. The algorithm is called the Contrastive Divergence algorithm. It works because of some limitations on the problem: that the graph of the nodes is bipartite, meaning there are two groups of nodes with no connections within the group. The hi
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く