タグ

ブックマーク / ja.wikipedia.org (25)

  • マルコフ決定過程 - Wikipedia

    マルコフ決定過程(マルコフけっていかてい、英: Markov decision process; MDP)は、状態遷移が確率的に生じる動的システム(確率システム)の確率モデルであり、状態遷移がマルコフ性を満たすものをいう。 MDP は不確実性を伴う意思決定のモデリングにおける数学的枠組みとして、強化学習など動的計画法が適用される幅広い最適化問題の研究に活用されている。 MDP は少なくとも1950年代には知られていた[1]が、研究の中核は1960年に出版された Ronald A. Howard の "Dynamic Programming and Markov Processes" に起因する[2]。 MDP はロボット工学や自動制御、経済学、製造業を含む幅広い分野で用いられている。 概要[編集] 3つの状態と2つの行動をもつ簡単な MDP の例 マルコフ決定過程は離散時間における確率制御

    マルコフ決定過程 - Wikipedia
  • 関数の台 - Wikipedia

    コンパクトな台 [−1, 1] を持つ滑らかな関数の例。 数学における、ある函数の台(だい、英: support)とは、その函数の値が 0 とならない点からなる集合、あるいはそのような集合の閉包のことを言う[1]。この概念は、解析学において特に幅広く用いられている。また、何らかの意味で有界な台を備える函数は、様々な種類の双対に関する理論において主要な役割を担っている。 定義[編集] 与えられた集合 X 上の函数 f が、Y(⊂ X) に台を持つ (supported in) とは、その函数 f が Y の外側 X ∖ Y で常に消えていることを言う。このとき、Y を部分集合として含む任意の集合(Y の拡大集合)Z に対して f は Z に台を持つことになるのは明らかであるから、函数 f の台 supp(f) は、f が台を持つような X の部分集合全ての交わりとして定義される。即ち、集合論

  • 台 (測度論) - Wikipedia

    数学の分野で、ある可測な位相空間 (X, Borel(X)) 上の測度 μ の台(だい、英: support)とは、その空間 X のどこでその測度が「生きている」かということに関する厳密な概念である。しばしば位相的台(topological support)やスペクトル(spectrum)と呼ばれることもある。そのような台は、すべての点のすべての近傍が正の測度を持つような、X の最大の(閉)部分集合で定義される。 動機[編集] ある可測空間 (X, Σ) 上の(非負の)測度 μ は実際、函数 μ : Σ → [0, +∞] と表すことが出来る。したがって、通常の台の定義に従えば、μ の台は次のような σ-代数 Σ の部分集合となる。 しかし、この定義にはいくらか不十分な点がある。実際、Σ 上の位相すら与えられていないのである。今我々が当に知りたいことは、空間 X 内のどこにおいて測度 μ

  • 測度論 - Wikipedia

    出典は列挙するだけでなく、脚注などを用いてどの記述の情報源であるかを明記してください。 記事の信頼性向上にご協力をお願いいたします。(2019年1月) A が B の部分集合なら、A の測度は B と等しいかそれより小さい。また空集合の測度は 0 でなければならない。 測度論(そくどろん、英: measure theory)は、数学の実解析における一分野で、測度とそれに関連する概念(完全加法族、可測関数、積分等)を研究する。ここで測度(そくど、英: measure)とは面積、体積、個数といった「大きさ」に関する概念を精緻化・一般化したものである。よく知られているように積分は面積と関係があるので、積分(厳密にはルベーグ積分)も測度論を基盤にして定式化・研究できる[1]。 また、測度の概念は確率を数学的に定式化する際にも用いられるため(コルモゴロフの公理)、確率論や統計学においても測度論は重要

    測度論 - Wikipedia
  • 積分変換 - Wikipedia

    この記事には参考文献や外部リンクの一覧が含まれていますが、脚注によって参照されておらず、情報源が不明瞭です。脚注を導入して、記事の信頼性向上にご協力ください。(2023年8月) 数学の分野における積分変換(せきぶんへんかん、英: Integral transform)とは、次の形をとるような変換 T のことである: この積分変換の入力は関数 f であり、出力は関数 Tf である。積分変換は作用素の一種である。 多くの便利な積分変換が存在する。個々の積分変換は、その変換の核関数 (kernel function) あるいは核 (kernel, nucleus) と呼ばれる二変数関数 K を定めれば決まる。また、積分区間は,核によって適当に定められる。 いくつかの核関数には逆 K−1(u, t) が存在し、それは(大まかに言えば)次のような逆変換を満たす: このような公式は反転公式と呼ばれる。

  • スペクトル (関数解析学) - Wikipedia

    関数解析学において、有界作用素のスペクトルは、行列における固有値の概念の一般化である。特に、λI − T が可逆でなければ、λ ∈ C を有界線形作用素 T のスペクトルという。ただし I は恒等関数とする。スペクトル及びスペクトルに関連する研究は、スペクトル理論と呼ばれ多くの応用先を持つ。最も良く知られているのが、量子力学の数学的な枠組みについてである。 有限次元ベクトル空間上の作用素のスペクトルは厳密に、固有値の集合となる。しかしながら、無限次元空間上の作用素は、固有値を持たないことがある。例えば、ヒルベルト空間 ℓ2 上では、右シフト作用素 , は固有値を持たない。 固有値をもつ、つまり Rx = λx を満たすような 0 でない λ が存在するとすると、 となる。一方で、R − 0(つまり R 自身)は可逆ではない。つまり、ゼロでない第一成分が含まれていないような任意のベクトルにつ

  • レゾルベント - Wikipedia

    この記事には参考文献や外部リンクの一覧が含まれていますが、脚注によって参照されておらず、情報源が不明瞭です。脚注を導入して、記事の信頼性向上にご協力ください。(2018年1月) 数学におけるレゾルベント(英: resolvent, 解素)は、線型作用素(あるいは行列)のスペクトルの補集合(レゾルベント集合)を定義域とする解析函数である。 レゾルベントの解析的構造から線型作用素のスペクトル的な性質が調べられる。また、レゾルベントを用いれば、ヒルベルト空間やもっと一般の空間上の作用素のスペクトルの研究に複素解析学の概念を定式化して持ち込むことができる。レゾルベントは解核とも呼ばれ、(通常はリウヴィル-ノイマン級数として定義される)積分核として、非斉次フレドホルム積分方程式を解くのにも使われる。 イヴァール・フレドホルムは Acta Mathematica に収録された論文 (Fredholm

  • 半連続 - Wikipedia

    解析学における半連続性(英: semi-continuity)とは、拡大実数値関数(値として ±∞ を取り得る)に対して定義される「連続性」よりも弱い性質である。概略的に言うと、拡大実数値関数 f が点 x0 で上(下)半連続であるとは、x0 の十分近くで函数の値が f(x0) に近いかもしくは f(x0) よりも小さい(大きい)ことを言う。 例[編集] 上半連続な関数。青で塗り潰した点がf(x0)。 x < 0 において f(x) = –1、x ≥ 0 において f(x) = 1 と区分的に定義された関数fを考える。この関数はx0 = 0において上半連続であるが、下半連続ではない。 下半連続な関数。青で塗り潰した点がf(x0)。 閉集合の指示関数が上半連続である一方、開集合の指示関数は下半連続である。与えられた実数xに対し、それ以下の最大の整数を返す床関数 は、全ての点において上半連続で

  • ハーン–バナッハの定理 - Wikipedia

    数学におけるハーン–バナッハの定理(ハーン–バナッハのていり、英: Hahn–Banach theorem)は、関数解析学の分野における中心的な道具で、ベクトル空間の部分空間上で定義される有界線形汎関数が全空間へ拡張できることについて述べたものである。これにより、どのようなノルム線形空間においても、その上で定義される連続線形汎関数が、双対空間の研究を「面白い」ものにするに「十分」なほどたくさんあることがわかる。ハーン-バナッハの定理の別形態のものとして、ハーン–バナッハの分離定理あるいは分離超平面定理と呼ばれるものがあり、凸幾何学(英語版)の分野で多く用いられている。 定理の名前の由来は、1920年代後半にそれぞれ独立にこの定理を証明したハンス・ハーンとステファン・バナッハである。定理の特別な場合[1]については、より早い段階(1912年)でエードゥアルト・ヘリーによって証明されており[2

  • リースの表現定理 - Wikipedia

    この記事には参考文献や外部リンクの一覧が含まれていますが、脚注によって参照されておらず、情報源が不明瞭です。 脚注を導入して、記事の信頼性向上にご協力ください。(2016年6月) リースの表現定理(リースのひょうげんていり、英: Riesz representation theorem)とは、数学の関数解析学の分野におけるいくつかの有名な定理に対する呼称である。リース・フリジェシュの業績に敬意を表し、そのように名付けられた。 この定理は、ヒルベルト空間とその(連続的)双対空間の間に、ある重要な関係性を構築するものである。すなわち、基礎体が実数体であるなら、それら2つの空間は等長同型であり、複素数体であるなら、それらは等長反同型(英語版)である、ということについてこの定理は述べている。そのような(反)同型性は、以下で述べるように、とりわけ自然なものである。 H をヒルベルト空間とし、H から

  • カルマンフィルター - Wikipedia

    カルマンフィルター (英: Kalman filter) は、誤差のある観測値を用いて、ある動的システムの状態を推定あるいは制御するための、無限インパルス応答フィルターの一種である。 カルマンフィルターは、 離散的な誤差のある観測から、時々刻々と時間変化する量(例えばある物体の位置と速度)を推定するために用いられる。レーダーやコンピュータビジョンなど、工学分野で広く用いられる。例えば、カーナビゲーションでは、機器内蔵の加速度計や人工衛星からの誤差のある情報を統合して、時々刻々変化する自動車の位置を推定するのに応用されている。カルマンフィルターは、目標物の時間変化を支配する法則を活用して、目標物の位置を現在(フィルター)、未来(予測)、過去(内挿あるいは平滑化)に推定することができる。 カルマンフィルターは時間領域において、連続時間線形動的システム、もしくは離散化された離散時間線型動的システ

    y034112
    y034112 2018/09/14
  • 弱位相 - Wikipedia

    この項目では、ノルム線型空間上の弱位相について説明しています。写像の族による弱位相については「始位相」を、空間の被覆による弱位相については「コヒーレント位相」をご覧ください。 弱位相(じゃくいそう、英: weak topology)とは、ノルム空間X上に定義される位相の一つである。体K上のノルム空間にはノルムから定まる位相(ノルム位相。弱位相と区別するため強位相とも呼ばれる)があるが、弱位相はこれよりも弱い(強くない)位相であり、X上のK値有界線形写像(すなわちXの共役空間X*の元)が全て連続になる最弱な位相である。なお弱位相は位相空間論における始位相(英語版)の特別な場合に当たる。 強位相に関するものと区別するため、弱位相に関する連続性、収束性、コンパクト性はそれぞれ弱連続性、弱収束性、弱コンパクト性と呼ばれる。 項では弱位相の関連概念である*弱位相についても述べる。 定義[編集] 以

    y034112
    y034112 2018/09/08
    ヒルベルト空間における弱収束と強収束
  • 一様有界性 - Wikipedia

    数学の分野における有界関数とは、下界と上界、すなわちその関数のどの値の絶対値よりも大きい定数が存在する関数のことを言うが、そのような関数の族を考えた場合には、関数によってそのような定数が異なるものとなる場合がある。もしもそれら全てを抑えるような一つの定数を見つけることが出来るなら、そのような関数の族は一様有界(いちようゆうかい、英: uniform bounded)であると呼ばれ、そのような性質のことを一様有界性(いちようゆうかいせい、英: uniform boundedness)と呼ぶ。 関数解析学における一様有界性原理(英語版)は、作用素の族が一様有界であるための十分条件を与える。 定義[編集] 実数直線および複素平面において[編集] を、 によって添え字付けられている関数の族とする。ここで は任意の集合で、 は実数あるいは複素数の集合である。 が一様有界であるとは、 を満たすようなあ

  • 双対ベクトル空間 - Wikipedia

    数学におけるベクトル空間の双対ベクトル空間(そうついベクトルくうかん、英: dual vector space)あるいは単に双対空間(そうついくうかん、英: dual space)は、そのベクトル空間上の線型汎函数(一次形式)全体の成す空間として定義される。有限次元ベクトル空間の双対空間はテンソルの研究に利用することができる。函数の成す(典型的には無限次元の)ベクトル空間に対する双対空間は、測度や超函数、あるいはヒルベルト空間のような概念の定義や研究に用いられ、結果として双対空間は函数解析学の研究における重要な観念となっている。 一般に双対空間には、代数的双対と連続的双対の二種類が用いられており、代数的双対は任意のベクトル空間に対して定義することができるが、位相線型空間を扱うときは代数的双対よりもその部分線型空間として、連続線型汎函数全体の成す連続的双対空間を考えるのが自然である。 体 F

  • 行列ノルム - Wikipedia

    線型代数学における行列ノルム(ぎょうれつノルム、英: matrix norm)は、ベクトルのノルムを行列に対し自然に一般化したものである。 性質[編集] 以下では体 K を実数体 R または複素数体 C のいずれかを指すものとして用いる。また、Km×n を、K の元を成分に持つ m 行 n 列の矩形行列の全体が、通常の和とスカラー倍に関してなすベクトル空間とする。Km×n 上の行列のノルムはベクトルとしてのノルムである。すなわち、行列 A のノルムを ‖ A ‖ で表せば 正定値性:‖ A ‖ ≥ 0 かつ等号成立は A = O と同値 斉次性:α ∈ K, A ∈ Km×n ならば ‖ αA ‖ = |α|‖ A ‖ 劣加法性:A, B ∈ Km×n ならば ‖ A + B ‖ ≤ ‖ A ‖ + ‖ B ‖ が全て満たされる。 正方行列 (m = n) に関して、以下に挙げる条件を課す

  • 線型写像 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "線型写像" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2020年7月) 数学の特に線型代数学における線型変換(せんけいへんかん、英: linear transformation、一次変換)あるいは線型写像(せんけいしゃぞう、英: linear mapping)は、ベクトルの加法とスカラー倍を保つ特別の写像である。特に任意の(零写像でない)線型写像は「直線を直線に移す」。 概要[編集] 抽象代数学の言葉を用いれば、線型写像とは(体上の加群としての)ベクトル空間の構造を保つ準同型のことであり、また一つの固定された体上のベクトル空間の全体は

  • 上極限と下極限 - Wikipedia

    で定義される。 性質[編集] 数列 (an) の上極限と下極限は(無限大をとることを許せば)必ず存在する。これは極限値が存在するかどうか分からないのと対照的である。 (an) の部分列 (bn) が収束したとする。このとき (an) の部分列で上極限に収束するものが存在する。下極限についても同様。 この2つの性質から導ける次の性質がもっとも重要である。 「(an) が収束すること」と「上極限と下極限が一致すること」は同値である。 集合列の上極限と下極限[編集] 数列の場合と同様にして、集合の列 (An) にも上極限と下極限が定義される。 集合の列の場合は上極限と下極限が一致するときに集合の列は収束するといい、 と書くことがある。これらは集合のかわりに集合の定義関数の列を考えれば、数列の場合の定義と一致する。 集合列の上極限と下極限は確率論でよく使われる。確率論においては列として事象の列(A

    上極限と下極限 - Wikipedia
  • ヒルベルト空間 - Wikipedia

    数学におけるヒルベルト空間(ヒルベルトくうかん、英: Hilbert space)は、ダフィット・ヒルベルトにその名を因む、ユークリッド空間の概念を一般化したものである。これにより、二次元のユークリッド平面や三次元のユークリッド空間における線型代数学や微分積分学の方法論を、任意の有限または無限次元の空間へ拡張して持ち込むことができる。ヒルベルト空間は、内積の構造を備えた抽象ベクトル空間(内積空間)になっており、そこでは角度や長さを測るということが可能である。ヒルベルト空間は、さらに完備距離空間の構造を備えている(極限が十分に存在することが保証されている)ので、その中で微分積分学がきちんと展開できる。 ヒルベルト空間は、典型的には無限次元の関数空間として、数学、物理学、工学などの各所に自然に現れる。そういった意味でのヒルベルト空間の研究は、20世紀冒頭10年の間にヒルベルト、シュミット、リー

    ヒルベルト空間 - Wikipedia
  • コーシー列 - Wikipedia

    各 n に対して順番に縦軸上にプロットしたコーシー列の例。xn = 3e−0.4n sin (5n) たちは、コーシー列を成している。 コーシー列ではない例 xn = n + 2/n + 0.8 sin (5n) 解析学におけるコーシー列(コーシーれつ、Cauchy sequence)は、数列などの列で、十分先の方で殆ど値が変化しなくなるものをいう。基列(きほんれつ、fundamental sequence)、正則列(せいそくれつ、regular sequence)[1]、自己漸近列(じこぜんきんれつ)[2]などとも呼ばれる。実数論において最も基となる重要な概念の一つである。 無限数列 (xn) について が成り立つとき、数列 (xn) はコーシ-列である(あるいはコーシー的である、コーシー性を持つ)という。有限数列 (x1 ,x2, …, xk) は xk = xk+1 = xk+2

    コーシー列 - Wikipedia
  • デーモン (ソフトウェア) - Wikipedia

    デーモン (英語: Daemon) は、UNIX, Linux, Mac OS XなどUnix系のマルチタスクオペレーティングシステム (OS) において動作するプロセス(プログラム)で、主にバックグラウンドで動作するプロセス[1]。ユーザが直接対話的に制御するプログラムもデーモンとして作ることができる[2]。典型的なデーモンは名前の最後尾に "d" が付く。例えば、syslogd はシステムログを扱うデーモン、sshd は内外のSSH接続要求を受け付けるデーモンである。 Unix系の環境では、常にではないが、デーモンの親プロセスはinitプロセスとなっていることが多い。デーモンは起動処理内でforkで子プロセスを作成し、親プロセスの方が即座に終了するため、init が里親となる。さらにデーモンまたはOSは制御端末 (tty) からの切り離しなどの処理も行う必要がある。こういったデーモンを