タグ

ブックマーク / tech.preferred.jp (9)

  • 今年のSIGKDDベストペーパーを実装・公開してみました - Preferred Networks Research & Development

    毎日暑いですね。比戸です。 ちょうど今週シカゴで開かれていたSIGKDD2013でBest research paperに選ばれたEdo Liberty氏 (Yahoo! Haifa Labs)の”Simple and Deterministic Matrix Sketching”のアルゴリズムを実装して公開してみました。 元論文PDFは著者サイトから、私が書いたPythonコードはGithubからそれぞれ入手できます。 SIGKDD (ACM SIGKDD Conference on Knowledge Discovery and Data Mining)はACM主催で行われる、知識発見&データマイニングにおけるトップ会議です。最近は機械学習との境目が曖昧になってきましたが、査読時には理論的な新しさだけでなく、実データ(特に大規模データ)を使った実験での評価が必要とされるのが特徴です。

    yass
    yass 2013/08/16
    "SIGKDD (ACM SIGKDD Conference on Knowledge Discovery and Data Mining)はACM主催で行われる、知識発見&データマイニングにおけるトップ会議/Matrix sketchとは簡単に言うと、元の大きなNxM行列Aを、はるかに小さなℓxM行列B(N >> ℓ)で近似"
  • Tree Edit Distanceと自然言語処理への応用 - Preferred Networks Research & Development

    海野です。ちょっと時間があいてしまいましたが、昨年の12月に開催されたNTCIR-9という会議のRecognizing Inference in TExt (RITE)というタスクに、前職の方々と共著で出場しました。 Syntactic Difference Based Approach for NTCIR-9 RITE Task. Yuta Tsuboi, Hiroshi Kanayama, Masaki Ohno and Yuya Unno. NTCIR-9, 2011. [pdf] 含意関係認識といわれるこのタスクは、大雑把に言うと与えられた2つの文が同じ意味のことを言っているかどうか判定しなさいというタスクです(厳密には一方からもう一方が帰結できるかの判定です)。今日は、その中で使ったTree Edit Distance (TED) について解説します。 TEDは2つの順序付き木が

  • 異常検知の世界へようこそ - Preferred Networks Research & Development

    比戸です。 先週Jubatusの最新0.4.0がリリースされましたが、外れ値検知機能の追加が目玉の一つとなっています(jubaanomaly)。昨年PFIへ入社して初めて手がけた仕事が公開されたということで感慨ひとしおですが、便乗してあまり語られることのない異常検知の世界について書きたいと思います。以下の資料は昨年のFIT2012で使ったものです。 異常検知とは簡単にいえば、「他に比べて変なデータを見つけ出す」タスクです。お正月にテレビで繰り返し流れた、おすぎとピーコのCM(*1)がわかりやすいイメージですね。機械学習の枠組みで言えば”教師無し学習”に属します。分類や回帰、クラスタリングなど応用も多く人気も研究熱も高いタスクに比べると、マイナーです。SVMとか、Random Forestとか、Boostingとか、最近だとDeep Neural Networkとか、有名な必殺技アルゴリズム

    異常検知の世界へようこそ - Preferred Networks Research & Development
  • 機械学習と自然言語処理とビッグデータ - Preferred Networks Research & Development

    岡野原です。 情報処理学会主催の連続セミナー「ビッグデータとスマートな社会」での機械学習の回、自然言語処理の回での講演資料を公開しました。 今年はビッグデータという言葉が広まったということで、このテーマで話す機会が多かったです。今はビッグデータというとそれを支えるインフラ、クラウド、DBなどがまず注目されていますが、我々としては実際それを使って何をするのか、何が実現できるのかというところを注目しています。 PFIは元々こうしたデータを分析して価値を提供する(検索エンジンとかもその範疇に入ると思います)ことをずっと続けてきたわけですが、ビッグデータという言葉が広まってくれたおかげでこの考えがより受け入れられ様々な業界の方と随分と話がしやすくなったと思います。 以下の講演資料では、今ビッグデータの中でも機械学習と自然言語処理の分野において我々がどこに注目しているのかを話をしました。

    機械学習と自然言語処理とビッグデータ - Preferred Networks Research & Development
  • Compressed Permuterm Index: キーワード辞書検索のための多機能&省メモリなデータ構造 - Preferred Networks Research & Development

    はじめましてこんにちわ。 4月からPFIで働いているまるまる(丸山)です。最近のマイブームはスダチです。 リサーチブログの更新が再開されたので、私も流れに乗って初ブログを書いてみようと思います。 今回は社内の情報検索輪講で少し話題にあがったCompressed Permuterm Indexを紹介したいと思います。 Paolo Ferragina and Rossano Venturini. “The compressed permuterm index”, ACM Transactions on Algorithms 7(1): 10 (2010). [pdf] これを実装したので以下のgoogle codeに晒してみることにします。 http://code.google.com/p/cpi00/ 修正BSDライセンスです。ソースコードは好きにしてもらって構いませんが、完成度はまだまだな

    Compressed Permuterm Index: キーワード辞書検索のための多機能&省メモリなデータ構造 - Preferred Networks Research & Development
  • 大規模データ時代に求められる自然言語処理 - Preferred Networks Research & Development

    話の内容は、自然言語処理が実世界で具体的にどのように応用されているのか、またその時に感じた課題についてです。 後半の「何が必要とされているか」、あたりの話からは私や会社が特に重点的に取り組んでいる事そのものの話もなります。

    大規模データ時代に求められる自然言語処理 - Preferred Networks Research & Development
  • 最速の疎ベクトルはどれだ - Preferred Networks Research & Development

    海野です。 自然言語処理などで機械学習を行おうとすると、非常に疎なベクトル表現を使いたくなります。疎、というのはほとんどの要素が0である、という意味です。前々から疎ベクトルライブラリのパフォーマンスに関して気になっていたので、幾つか調べてみました。 Jubatus Workshopでも話したとおり、機械学習を適用しようとすると、普通は対象のデータをベクトル表現に落とします。特に言語データの場合は、それぞれの単語や文字などを特徴次元とするため、非常に疎なベクトルとなってしまいます。純粋な配列(C++で言えばstd::vector)を使ってしまうと、大量にメモリをってしまうため疎ベクトル専用の表現を使うのが普通です。 今日は様々な疎ベクトルライブラリのパフォーマンス比較を行おうと思います。比較したライブラリは以下のとおり。真の意味で、疎ベクトルのライブラリは、Eigenとublasだけで、残

    最速の疎ベクトルはどれだ - Preferred Networks Research & Development
  • 分散データベース「HBase」の安定運用を目指して - Preferred Networks Research & Development

    1年経ってiPhone4の電池がヘタってきた、太田です。 指数関数的にエントリ数が少なくなってきたブログですがw、景気付けのためにエントリを投稿したいと思います!日はHBaseについてです。 Linux と Hadoop と HBase と ZooKeeper に詳しいあなた!あなたがターゲットです。 HBaseとは? HBaseとは、HDFS (Hadoop Distributed File System)上に構築された分散データベースです。大量の非常に細かいデータをリアルタイムに読み書き出来るのが特徴です。最近ではFacebook Messageの基盤技術として使用された事で注目を集めています。 HBase公式サイト Apache HBase ブック 保存されたデータはHDFS上に保存され、HDFSの仕組みによってレプリケーションされるため安全にデータを保持することが出来ます。 ま

    分散データベース「HBase」の安定運用を目指して - Preferred Networks Research & Development
  • MinHashによる高速な類似検索 - Preferred Networks Research & Development

    年が明けてもう一ヶ月経ちましたね.岡野原です. 今日はMinHashと呼ばれる手法を紹介します.これは特徴ベクトルの高速な類似検索に利用することができます(クローラーの文脈だとShingleとして知られている). 今や世の中のあらゆる種類のデータが,高次元のバイナリベクトルからなる特徴ベクトルで表されて処理されるようになってきました.例えば文書データであれば文書中に出現する単語やキーワードの出現情報を並べた単語空間ベクトル(Bag of Words)で表し,画像データも,SIFTをはじめとした局所特徴量を並べた特徴ベクトル(とそれをSkecth化したもの)として表せます.行動情報や時系列データも特徴量をうまく抽出する.グラフデータもFast subtree kernels[1]と呼ばれる方法で非常に効率的に特徴ベクトルに変換することができ,グラフの特徴をよく捉えることができるのが最近わかっ

    MinHashによる高速な類似検索 - Preferred Networks Research & Development
  • 1