次へ: 序 論 有限混合分布モデルの学習に関する研究 (Web 版) 赤穂 昭太郎 2001 年 3 月 15 日学位授与(博士(工学)) 序 論 研究の背景と位置づけ 論文の構成 有限混合分布とその基本的性質 定義 モジュール性 階層ベイズモデルとの関係 パラメトリック性とノンパラメトリック性 RBF ネットワークとの関係 学習における汎化と EM アルゴリズム 最尤推定 汎化と竹内の情報量規準 (TIC) 汎化バイアス 竹内の情報量規準 (TIC) 冗長性と特異性 EM アルゴリズム 一般的な特徴 一般的な定式化 独立なサンプルが与えられた時の混合分布の学習 独立な要素分布の場合 サンプルに重みがある場合 EM アルゴリズムの一般化 EM アルゴリズムの幾何学的解釈 正規混合分布の汎化バイアスの非単調性について はじめに Radial Basis Boltzmann Machine (