はじめに 語彙力なくてすみません、 browser-use は、「AI エージェントがウェブブラウザを操作できるようにする」ためのライブラリです。 プロンプトで与えられた指示どおりに動き、ほかの技術と比較しても精度が抜群に高いです。 早速試してみます。 実践 複数のECサイトから特定の商品価格を取得することを目標とする。 Python は 3.11 以上が必要です。
はじめに最近、LLMへのRAGを用いた文書データの連携等を目的に海外を中心にOCRや文書画像解析技術に関連する新しいサービスが活発にリリースされています。 しかし、その多くは日本語をメインターゲットに開発されているわけではありません。日本語文書は、英数字に加えて、ひらがな、漢字、記号など数千種類の文字を識別する必要があったり、縦書きなど日本語ドキュメント特有のレイアウトに対処する必要があったりと日本語特有の難しさがあります。 ですが、今後、海外の開発者がこれらの課題に対処するため、日本のドキュメント画像解析に特化したものをリリースする可能性は低く、やはり自国の言語向けのサービスは自国のエンジニアが開発すべきだと筆者は考えています。 もちろん、Azure Document Intelligenceをはじめとした、クラウドサービスのドキュメント解析サービスはありますが、クラウドを利用できないユ
この本では、初心者・入門者の方に向けて、RAGの知識や使い方を体系的にまとめました。少し難易度の高い内容になりますが、本書の中で事前に学んでおくべき項目を示しているため、ご安心ください。 【概要】 ・内容:RAGの概要【入門者向けの基礎知識】、RAGの処理フロー【In-Context Learning / Embedding / Vector Search】、RAGのビジネス活用ロードマップ【大企業向け】、RAGの実装アプローチ、RAGの大分類【Document RAG】、RAGの大分類【SQL RAG】、RAGの大分類【Graph RAG】、RAGの精度評価アプローチ、RAGの精度評価方法【LangChain Evaluation】、RAGの精度評価方法【Ragas】、RAGの精度改善手法【データ品質 / プロンプト品質 / ベクトル検索】、RAGの精度改善のためのLLMOps概論、LL
凄いものが出てきてしまった。 ChatGPTの「Code Interpreter」が話題になったが、あれはあくまでクラウド上で動いているだけ。それを模してローカルで動作するようになった「Open Interpreter」は、衝撃的な成果である。 Open Interpreterのインストールは簡単。コマンド一発だ $ pip install open-interpreter起動も簡単 $ interpreter -yこれだけでOK。 あとはなんでもやってくれる。 たとえばどんなことができるのかというと、「AppleとMetaの株価の推移をグラフ化してくれ」と言うとネットから自動的に情報をとってきてPythonコード書いてグラフをプロットしてくれる。 凄いのは、ローカルで動くのでたとえばApplescriptを使ってmacOSで動いているアプリを直接起動したり操作したりできる。「Keynot
はじめに はじめまして。株式会社ずんだもんのアルバイトエンジニアのinadaです。 今日は誰でも作れるずんだもんと題してローカルPCにずんだもんAIを作ります。この記事はそのチュートリアル記事です。 (誰でもと書いてますが、RTX 3060(12G)搭載以上のPC推奨です。CPUマシンでも出来る部分はありますが非推奨です。RTX 3060(12G)のグラボは5万ぐらいで買えるので持ってなければ買っちゃいましょう。) 対象読者/記事の範囲 ローカルPCで動かせる大規模言語モデルを、学習用のデータの用意から、学習、動かすところまで一通りどんなものか、お試ししてみたい人。 自分だけの世界にただ一人だけのうちの子、またはパートナー(うちの嫁)を作り育てたい。そんな沼にはまりたい、興味がある人。 AIの仕組みや用語は当記事では解説しません。AIの用語(モデル, loss, epoch, checkp
ガジェット全般、サイエンス、宇宙、音楽、モータースポーツetc... 電気・ネットワーク技術者。実績媒体Engadget日本版, Autoblog日本版, Forbes JAPAN他 コンピューターはプログラムコードで動作しますが、このコードは人間が記述している以上、どうしてもエラーを含んでしまうことが避けられません。 しかし、最近は大規模言語モデルを使ったGPTなどジェネレーティブAIの急速な進歩により、目的とする処理を文章として渡すだけで、AIがある程度プログラムコードを出力できるようになってきました。 そして、BioBootloaderと名乗る開発者による新しい試みでは、プログラム開発の際にどうしても必要となるデバッグ作業を、GPT-4をベースとするAIで行うことを可能にしました。このツールは、プログラムを自動修正することから、似た能力を持つアメコミヒーローにちなんで「Wolveri
※ 一部ガイドラインに反する内容がありましたので、該当箇所を修正のうえ再投稿しております。 はじめに Axross は、エンジニアの"教育"と"実務"のギャップに着目し、「学んだが活用できない人を減らしたい」という想いで、ソフトバンク社内起業制度にて立ち上げたサービスです。 現役エンジニアによる実践ノウハウが"レシピ"として教材化されており、実際に動くものを作りながら、具体的な目的・テーマをもってプログラミングを学ぶことができます。 今回は、Axross運営が厳選した『AI・Python活用レシピを100選』をご紹介します。是非、みなさまのAIやPython学習の参考にしてみてください。 Axross:https://axross-recipe.com 公式Twitter:https://twitter.com/Axross_SBiv 基礎 スクレイピング 01 . JUMPの掲載順をスク
本記事は『現場で使える!Python機械学習入門』の「CHAPTER2 機械学習を実務で使う」からの抜粋です。掲載にあたり、一部を編集しています。 2.1 業務で機械学習を使う 業務で機械学習を用いる際には、「課題を明らかにし、定式化する」ことが重要です。課題を機械学習で解決できる段階まで落とし込む例について解説します。 2.1.1 機械学習について 近年ではデータ処理技術の向上や計算機の処理能力の向上の影響、さらには活用可能なデータの増加に伴い、「AI」、「人工知能」などの用語が一般大衆の人たちにも広がっています。そのため、「AIを使いたい」という要望が、技術者や研究者に限らず、経営層やその他非技術職から出ることも多くあるという話を耳にします。筆者も実体験として、人工知能や周辺技術と関わってこなかったような方々から「人工知能(AI)を用いて面白いことをしたい」などの相談を受けたことがあり
追記 Pythonや機械学習がオンライン上で学べるAI Academyをnoteでも書きましたが、3/17日からほとんどのコンテンツを永続的に無料で利用できるよう致しましたので、是非この記事と合わせて使って頂けますと幸いです! AI Academy Bootcamp 6ヶ月35,000円にてチャットで質問し放題の環境で、機械学習やデータ分析が学べるサービスを提供しております。 数十名在籍しているデータサイエンティストや機械学習エンジニアに質問し放題の環境でデータ分析、統計、機械学習、SQL等が学べます。AI人材に必要なスキルを効率よく体系的に身に付けたい方は是非ご検討ください! https://aiacademy.jp/bootcamp はじめに 我々は、AI Academyというサービスを通じて、これまで1500名以上の方々に、プログラミング(Python)、統計的機械学習、深層学習(D
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く