タグ

ブックマーク / s0sem0y.hatenablog.com (10)

  • 初学者が機械学習の勉強を進めるためには必ず手を動かす - HELLO CYBERNETICS

    機械学習に必要な知識 ネット上の様々な意見 機械学習への携わり方と必要な数学 具体的に勉強を進める 簡単な問題で動作を確認 プログラムを書く Kaggleはやるべき? 勉強を進める上で使えるツールたち Python Jupyter Notebook scikit-learn TensorFlow 機械学習に必要な知識 ネット上の様々な意見 機械学習の勉強をしていく上で大事なものは何でしょうか。 調べればプログラミングだとか統計だとか、解析学・線形代数学であるなど、いろいろな意見が見られます。 おそらくネット上で見つかるいろいろな意見、「機械学習では○○を勉強すべき」という話は、少なくともその話を言っている人の中では真であるのだろうと思われます。 要するに、その勉強をしたことによって(あるいはその知識を持っていたことによって)、その人は何らかの機械学習に対する知見が得られたと言っているのです

    初学者が機械学習の勉強を進めるためには必ず手を動かす - HELLO CYBERNETICS
  • 機械学習で予測モデルを作る際の概要のオレオレまとめ - HELLO CYBERNETICS

    はじめに 機械学習のモデル 教師あり学習 機械学習における予測モデルの基的な作り方 予測モデルfの考え方 $\phi(x)$の決め方 特徴量エンジニアリング モデル選択 ニューラルネットワーク 複数の予測モデルの活用 アンサンブル ベイズ予測分布 はじめに 機械学習のモデルには数多くのものが存在します。 例えばサポートベクターマシンやニューラルネットワーク、ロジスティック回帰モデルなど、初学者にとってどれが何のために生み出され、 そしてどのような時に有効なのかを把握することは難しいように思います。 そこで今回はある特定のモデルについて細かく見るのではなく、機械学習のモデルが何を表し何を達成しようとしているのかの概観を与え、 それぞれのモデルがどういう時に使えそうなのかの感覚を身につける手がかりのようなものを書いてみたいと思います。 (最初、一般化線形モデルからベイズまでそれなりにしっかり

    機械学習で予測モデルを作る際の概要のオレオレまとめ - HELLO CYBERNETICS
  • 【PyTorch、Chainer、Keras、TensorFlow】ディープラーニングのフレームワークの利点・欠点【2017年10月更新】 - HELLO CYBERNETICS

    ディープラーニングの大流行の中、様々なフレームワークが登場し、気軽にプログラミングができるようになりました。しかし、そんな中どのフレームワークを選べば良いかわからないという人も多いと思います。そんな人に少しでも参考になればと思い記事を書きます。 はじめに Chainer 特徴 柔軟な計算グラフの構築が可能 Pythonによる実装 直感的な計算グラフの構築が可能 メリット・デメリット メリット デメリット まとめ Keras 特徴 とんでもなく簡単に計算グラフを記述可能 高速計算ライブラリのディープラーニング用ラッパー もはやプログラミングの経験すら不要 メリット・デメリット メリット デメリット まとめ TensorFlow 特徴 圧倒的な利用者数 テンソル計算を行うライブラリ Define and Run 追加のライブラリが豊富 メリット・デメリット メリット デメリット まとめ PyT

    【PyTorch、Chainer、Keras、TensorFlow】ディープラーニングのフレームワークの利点・欠点【2017年10月更新】 - HELLO CYBERNETICS
  • 今更聞けないディープラーニングの話【ユニット・層・正則化・ドロップアウト】 - HELLO CYBERNETICS

    ディープラーニングを手軽に始められるようにはなったものの、実際に学習を上手く進めるにはチューニングという作業が欠かせません。ここではチューニングの際に気をつけることをサラっとまとめておきます。 層の数とユニットの数 層の数 層が多いことの弊害 基的指針 発展的方法 ユニットの数 前提の知識 学習の指針の例:情報圧縮 ニューラルネットの中間層の役割 出力と入力の架け橋 中間層による表現力の柔軟性 正則化 L1正則化 L1正則化の概要 L1正則化の役割 ハイパーパラメータの調整 L2正則化 L2正則化の概要 L2正則化の役割 正則化がもたらすニューラルネットへの影響 正則化が上手に働く状況 正則化が失敗する例 正則化における方針 最適化法 学習における偽物の解 改良された勾配法 ドロップアウト アンサンブル学習 アンサンブル学習の考え ドロップアウトとアンサンブル学習 ドロップアウトをした場

    今更聞けないディープラーニングの話【ユニット・層・正則化・ドロップアウト】 - HELLO CYBERNETICS
  • 深層学習:ハイパーパラメータの設定に迷っている人へ - HELLO CYBERNETICS

    既に深層学習は、chainerやtensorflowなどのフレームワークを通して誰の手にも届くようになっています。機械学習も深層学習も、あまりよくわからないが試してみたいなという人が数多くいるように思います。そして、実際に試している人たちもたくさん居るでしょう。 そんなときにぶち当たる壁は、多種多様なハイパーパラメータの設定です。 これはテストデータの精度に対して、試行錯誤を繰り返しながら決めていくしかありません。 しかし闇雲に値を変えて試してみてもあまり良い成果は得られないでしょう。 今回は、各ハイパーパラメータがそもそもどのような効果を持っているのかをまとめ、学習を行う際の指針になるようにしたいと思います。 ハイパーパラメータとは ユニットの数をどうするべきか 中間層のユニットの数を膨大にする 中間層のユニットの数を少なくする 結局どちらが良いのか 荷重減衰 荷重減衰の効果 荷重減衰の

    深層学習:ハイパーパラメータの設定に迷っている人へ - HELLO CYBERNETICS
  • 機械学習の数学基礎 - HELLO CYBERNETICS

    機械学習関連の勉強を始めようと思うときに必ず立ちはだかるのが数学の壁です。いまや機械学習は理系のみならず、数学にさほど関わりがなかった文系の人たちにとっても興味のある話題となっています。 そこで機械学習で必要な数学の基礎をまとめてみたいと思います。まず、機械学習の勉強を始めるにあたって最低限必要な数学というのは実はそんなに多くありません。数学の全てを知ろうとするのではなく、最低限必要なものを抑えてから、個々の手法を使いながら更に深ぼっていけばイイと思います。ここではその最低限必要だと思う数学を題材にします。 必要なのは大雑把に言ってしまえば 線形代数 微分積分 確率・統計 のみです。もちろん更に深く理論を知ろうと思えば、もっといろいろな数学が必要になってきますが、機械学習の具体的な手法が何をしようとしているのかというのを、数式を追って確認する分にはこれくらいで大丈夫なはずです。更にこれらの

    機械学習の数学基礎 - HELLO CYBERNETICS
  • 機械学習・ディープラーニング・強化学習・ベイズを学べる無料講座 - HELLO CYBERNETICS

    はじめに ここでは、機械学習、ディープラーニング、強化学習、ベイズを無料で学ぶことのできるオンラインリソースを項目ごとにまとめておきます。 機械学習 ITについて学べるオンライン講座「Udacity」は、基的に有料で講座を受けるのですが、中には非常に中身の詰まったコンテンツで、かつ無料の講座も存在します。 以下の講座では、機械学習の各技術に関して広くカバーしており、決定木からサポートベクターマシン、ニューラルネットワークやベイズ、強化学習まで学ぶことができます。 かなりのボリュームなので興味のあるところを学んでいく感じでも良いと思います。 www.udacity.com s0sem0y.hatenablog.com s0sem0y.hatenablog.com ディープラーニング 同じくUdacityからディープラーニングに関する講座です。 多層パーセプトロンから畳み込みニューラルネット

    機械学習・ディープラーニング・強化学習・ベイズを学べる無料講座 - HELLO CYBERNETICS
  • 今更聞けないLSTMの基本 - HELLO CYBERNETICS

    ディープラーニングで畳込みニューラルネットに並ぶ重要な要素のであるLong Short-Term Memoryについて、その基を解説します。 LSTMとは リカレントニューラルネットワーク LSTMの役割 LSTMの計算 Output Gate Input GateとForget Gate Forget Gate Input Gate LSTMの肝であるMemory Cell周辺 Forget Gate側の出来事 Input Gate側での出来事 Cellの手前での出来事 出力付近の話 LSTMの役割 セル付近の役割 Forget Gateが過去の情報をどれだけ保持するか決める 全体を通しての役割 最後に LSTMとは LSTMとはLong Short-Term Memoryの略です。 short-term memoryとは短期記憶のことであり、短期記憶を長期に渡って活用することを可能に

    今更聞けないLSTMの基本 - HELLO CYBERNETICS
  • HELLO CYBERNETICS

    はじめに 誰向けか 顧客や自身の部下などにデータサイエンスを説明をしなければならない立場の人 機械学習のアルゴリズムには詳しいけどビジネス貢献ってどうやってやるの?という人 データサイエンスのプロジェクトを管理する人 機械学習やデータサイエンスをこれから始める人 感想 はじめに 下記の書籍を以前(結構時間が経ってしまいました)高柳さんから頂いていましたので感想を書きたいと思います。 評価指標入門〜データサイエンスとビジネスをつなぐ架け橋 作者:高柳 慎一,長田 怜士技術評論社Amazon 遅くなった言い訳としては、「個人としては多くの内容が既知であったこと」が挙げられるのですが、この書籍に書かれている内容が未知であるかあやふやな人にとっては当然非常に有用になっています。そして、何よりもその伝え方(書かれ方)が今になって素晴らしいと実感できたためこのタイミングで書くこととしました。 誰向けか

    HELLO CYBERNETICS
  • 機械学習手法を理解する手順 - HELLO CYBERNETICS

    はじめに プログラムへの理解度 機械学習への理解度 何が重要か アルゴリズムとしての理解 アルゴリズムとプログラム プログラムの理解 アルゴリズムとしての理解 機械学習手法を理解する方法 機械学習を抑えるためのポイント 更新式を理解すること 判別も回帰も大雑把には何らかの関数 大枠はこれで殆ど掴める 次のステップ モデルについて詳しく知る 最適化を知る まとめ つまずくポイント 記事 はじめに プログラムへの理解度 プログラムは複製が可能です。だれか一人がプログラムを完成させればそれを共有財産として使うことができます。それがいわゆる「ライブラリ」です。 果たして、ライブラリを作った人と使っている人の、そのプログラムへの理解度は同じだと言えるでしょうか。当然言えません。もしも同等の理解度を得たければ、ライブラリの中身まで覗く必要があるでしょう。 機械学習への理解度 同様にして、ある機械学習

    機械学習手法を理解する手順 - HELLO CYBERNETICS
  • 1