mi141 @mi141 Googleから凄い論文が出てますね。拡散モデルを数枚でちょっとfinetuneするだけで、「あなたのワンちゃん」を生成画像内に自由に登場させられます! StableDiffusionでやる人めっちゃ出てきそう。 原理としては対象に新しいwordを割り当ててモデルをfinetuneするようです。 dreambooth.github.io pic.twitter.com/fZTi9DBq72 2022-08-26 12:44:52
巷で話題のStable Diffusion(以下SD)をファインチューニングする方法が公開されたので、早速やります。
リンク ゆるおた学習帳 イラスト自動生成AI「Disco Diffusion」に絵を描いてもらった - ゆるおた学習帳 絵を描いてくれるAI「Midjourney」をきっかけに、この世にはオープンソースのイラスト生成AIがあることを知りました。早速自分も試したい!と思ったのですが、今回の「Disco Diffusion」はイラスト生成まで少し難しかったので自分用備忘録です。 参考にさせていただいた記事はコチラ↓Get Started With Disco Diffusion to Create AI Generated Art イラスト自動生成AI「Disco Diffusion」の使い方 「Disco Diffusion 2 users リンク note(ノート) 魔術として理解するお絵描きAI講座|深津 貴之 (fladdict)|note やればやるほど呪術化する、AI画像錬成につい
テクノロジースタートアップのデジタルレシピは、「画像生成AIに絵を描いてもらうためのテキスト作成支援AI」を公開しました。無料で利用できます。 AI画像生成ツール用にテキストを生成ジェネレーター ユーザーが入力したテキストをもとに画像を生成するとして話題の「画像生成AI」ですが、デジタルレシピは「どのような文章を入力したらいいのか分からない」というSNSでの声が多かったことからジェネレーターを開発したとのこと。 テキストボックスに日本語で文章を入力(推奨は全角500文字以上)、絵のスタイルを指定しボタンを押すと画像生成AIに読み込ませるためのテキストが生成されます。 「AI画像生成ツール用にテキストを生成ジェネレーター」を使って筆者が「Midjourney」で生成。テキストは日本語で「2人の少年が、草原でサッカーボールを蹴って遊んでいます。空は晴れていて気持ちよさそうな天気です。よく見ると
「Stable Diffusion」で遊んでいたところ、定期的に謎の画像に差し変えられてしまう皆さん
AIが画像を自動生成してくれる「Stable Diffusion」がすごい。これを使ったサービス「DreamStudio」は1枚6秒ほどで画像を生成してくれて早いが、無料枠を超えて使うには課金が必要になる。 Google Colabという、Pythonの実行環境を提供してくれるサービス上でStable Diffusionを動かせるそうだ。お金はかからない。1枚の画像生成にかかるのは30秒ほど。その方法は以下で解説されている。 Google Colab で はじめる Stable Diffusion v1.4|npaka|note 自分でもやってみて、今は無事にStable Diffusionを使えるようになっている。しかしGoogle Colabを使うのも初めてだったので上の記事だけだと詰まるところもあった。ここではそれを解説したいと思う。 ライセンスの確認 Hugging Faceのトー
852話さんには遠く及ばない... Gallery a samurai girl with japanese school uniform, japanese anime style A girl with wolf ear on silver hair, combat toon graphic, arknights, dolls frontline, pixiv girl's frontlineのつもりがdollsになってた...。その影響か人形っぽい雰囲気になっている。 concept idea of a kawaii girl with animal ear on her head, fantasy idle costume, equlip magic wand, beautiful face, thick coating painting, flower blooming, bir
2022年8月23日に無料公開された画像生成AI「Stable Diffusion」は、「ボールで遊ぶ猫」「森の中を走る犬」といった指示を与えると指示通りの画像を出力してくれます。Stable Diffusionはデモページで画像生成を試せる他、NVIDIA製GPUを搭載したマシンを用いてローカル環境で実行することも可能です。しかし、デモページは待ち時間が長く、NVIDIA製GPUは所持していない人も多いはず。Googleが提供しているPython実行環境「Colaboratory」を利用すれば、NVIDIA製GPUを所持していなくともStable Diffusionを待ち時間なしで実行する環境を無料で整えられるので、実際に環境を構築する手順や画像を生成する手順を詳しくまとめてみました。 Stable Diffusion with 🧨 Diffusers https://huggingf
リンク ITmedia NEWS 画像生成AI「Stable Diffusion」がオープンソース化 商用利用もOK AIスタートアップ企業の英Stability AIは、画像生成AI「Stable Diffusion」をオープンソース化した。AI技術者向けコミュニティサイト「HuggingFace」でコードやドキュメントを公開した他、同AIを試せるデモサイトなども公開している。 154 users 134 リンク はてな匿名ダイアリー HなStable Diffusion 前提として、StableDiffusionでエロ画像を出そうとしてもsafetycheckerという機能が入っており、センシティブな画像を出そうとすると黒塗りになる。(Stable… 180 users
前提として、Stable Diffusionでエロ画像を出そうとしてもsafety checkerという機能が入っており、センシティブな画像を出そうとすると黒塗りになる。 (Stable DiffusionのSaaSであるDream Studioはぼかしだが、多分別の技術) https://github.com/huggingface/diffusers/releases/tag/v0.2.3 そこでGoogle Colabでちゃちゃっと環境を作り、なおかつNSFWを回避する。 1. 下記のリンクでノートを開く https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_diffusion.ipynb 2. 下記の箇所を書き換える vvvvvvvvvvvvvvvvvv f
AIスタートアップ企業の英Stability AIは8月22日(現地時間)、画像生成AI「Stable Diffusion」をオープンソース化した。AI技術者向けコミュニティサイト「HuggingFace」でコードやドキュメントを公開した他、同AIを試せるデモサイトなども公開している。 Stable Diffusionを使い作成した機械学習モデルは、ライセンスを明記することで営利・非営利問わずに使用可能。生成した画像などについては、作成者自身が権利を持つ。法律に違反するものや武器など人に危害を与えるもの、誤った情報を広めるものなどでの利用は禁止している。 Stable Diffusionのモデルは、インターネット上の画像とテキストをペアを学習したもので、不適切な画像を出力しないよう安全装置も実装されているという。開発者向けにDiscordのサーバを開設しており、安全な取扱いについての意見も
画像生成AIのStable Diffusionがオープンソースとして公開されましたね。さっそく動かしてみたいなと思って触ってみることにしましたが、手元にあるのはMacBookだけなので、なかなか大変でした。 ありがたいことに、先人がたくさんいるので参考にして環境構築ができました! たぶんそれなりにすぐにすんなり動かせるようになると思いますけど、今すぐやってみたくてトラブってる人の参考になればと、わりとなぐり書きで恐縮ですが書いておきます。 動作速度とか ちなみに気になる実行速度ですが、自分が使っているのはMacBookPro 14インチモデルの一番スペックが低いやつでして 8コアCPU、14コアGPU、16コアNeural Engine搭載Apple M1 Pro メモリ32GB です。 画像生成中は15〜20GBほどメモリを消費し、5分ほどで画像が6枚生成できます。 学習モデルを取得する
2. ライセンスの確認以下のモデルカードにアクセスして、ライセンスを確認し、「Access Repository」を押し、「Hugging Face」にログインして(アカウントがない場合は作成)、同意します。 4. Colabでの実行Colabでの実行手順は、次のとおりです。 (1) メニュー「編集→ノートブックの設定」で、「ハードウェアアクセラレータ」に「GPU」を選択。 (2) 「Stable Diffusion」のインストール。 # パッケージのインストール !pip install diffusers==0.3.0 transformers scipy ftfy(3) トークン変数の準備。 以下の「<HugginFace Hubのトークン>」の部分に、先程取得したHuggingFace Hubのトークンをコピー&ペーストします。 # トークン変数の準備 YOUR_TOKEN="<H
話題のStableDiffusionがオープンソースで8/23に公開されたので、手元のマシンで動かすまで試したいと思います🖼 (下記に記載していますが、自分の環境だとVRAMが不足しているエラーが出てしまったのでイレギュラーな対応をしています🙏) ※ ↑追記 コメント欄にて、 @kn1chtさんが紹介してくださっているように、マシンのVRAMが10GB未満の環境では半精度(float16)のモデルがオススメされています。 本記事では、別の最適化されたものを紹介していますが、こちらの利用も検討してみると良さそうです👉 https://zenn.dev/link/comments/7a470dc767d8c8 StableDiffusionがどんなものかは、深津さんの記事が参考になります。 1. 環境 Razer Blade (RTX 2070, VRAM 8GB) CUDA Toolk
お知らせ(8/27 08:08)新サービスに移行しました。より便利に使いやすくなっています。そしてずっと無料です 開発の経緯はこちら https://note.com/shi3zblog/n/n8a3c75574053 夜更かしをしていたらすごい勢いでStable Diffusionが落ちてきて、あまりにうれしいのでこの喜びを皆様と分かち合いたく、無償で公開します。 使い方低コスト運用ですので、テキストボックスに文字を入力したあと、Requestボタンを押して、しばらくしたらリロードしてみるとどこかに自分の入れたものが表示されているはずです。といっても、今回のStableDiffusionはめちゃくちゃ速いので運が悪いと無視されます(そうしないと無限に電気代とサーバー代がかかってしまうので無料故の措置だと思ってください)。 注意事項Requestを連打しないでください。 腕に覚えのある方h
It is our pleasure to announce the public release of stable diffusion following our release for researchers [https://stability.ai/stablediffusion] Over the last few weeks, we all have been overwhelmed by the response and have been working hard to ensure a safe and ethical release, incorporating data from our beta model tests and community for the developers to act on. In cooperation with the tirel
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く