この記事には独自研究が含まれているおそれがあります。 問題箇所を検証し出典を追加して、記事の改善にご協力ください。議論はノートを参照してください。(2016年2月) 0 の 0 乗(れいのれいじょう)は、累乗あるいは指数関数において、底を 0、指数を 0 としたものである。その値は、代数学、組合せ論などの文脈では通常 1 と定義される[注 1]一方で、解析学の文脈では二変数関数 xy が原点 (x, y) = (0, 0) において連続とならないため定義されない場合もある。 実数 x の正整数 n 乗は、素朴には、n 個の x を掛け合わせたものである。厳密には、次のように再帰的に定められる。 x0 を定義する場合には、関係式 が n = 0 でも成立するように定義を拡張するのが自然である。 そこで、 に無理やり n = 0 を代入すれば、x0 + 1 = x0 × x すなわち x =