■質問用テンプレ 【テンプレorまとめサイトを読みましたか?】はい・いいえ 【学年】 ←新、現の区別をはっきりと書く 【学校レベル】 ←なくても可 【偏差値】 ←どの予備校の模試かをきちんと書く 【志望校】 ←文系・理系、学部学科を書く 【今までやってきた本や相談したいこと】 テンプレ 携帯用 http://ime.nu/juken.xrea.jp/mb/sugaku.html PC用 http://ime.nu/juken.xrea.jp/modules/bwiki/index.php?sugaku 新まとめサイト(議論中) http://ime.nu/www.geocities.jp/math_study_2ch/index.html 大学受験版(総合) 特製 天プレ丼 http://ime.nu/daigakujuken.at.info
Quick Graph: 数ⅢC履修の高校生は全員DL!もうホント良すぎるアプリだから。無料。1093 <Quick Graphの3ポイント紹介> ・関数と図形の問題を解く秘訣は、グラフをイメージできるかどうか ・最大値・最小値問題が苦手な方はこのアプリを使いましょう ・xy平面だけでなく、xyz空間のグラフも描画出来ます 今まで見てきたグラフ描画アプリの中では、最強です。これは確実です。 私は早稲田の理工に通っていましたが、今私が受験生だったら、絶対このQuick Graphを活用して勉強していたと思います。 このアプリがなぜ最強なのか。一言で言うと「使いやすい」から。今までのグラフ描画アプリは、高性能すぎて、限られた人間しか扱えないものばかりでした。 しかし、このアプリは使い方とてもに簡単です。受験生でも扱えます。唯一「cotθ」という、高校生が習わない三角関数が登場しますが、これは無
Author:くるぶし(読書猿) twitter:@kurubushi_rm カテゴリ別記事一覧 新しい本が出ました。 読書猿『独学大全』ダイヤモンド社 2020/9/29書籍版刊行、電子書籍10/21配信。 ISBN-13 : 978-4478108536 2021/06/02 11刷決定 累計200,000部(紙+電子) 2022/10/26 14刷決定 累計260,000部(紙+電子) 紀伊國屋じんぶん大賞2021 第3位 アンダー29.5人文書大賞2021 新刊部門 第1位 第2の著作です。 2017/11/20刊行、4刷まで来ました。 読書猿 (著) 『問題解決大全』 ISBN:978-4894517806 2017/12/18 電書出ました。 Kindle版・楽天Kobo版・iBooks版 韓国語版 『문제해결 대전』、繁体字版『線性VS環狀思考』も出ています。 こちらは10刷
■補数って? 10、100,1000……から、ある数を引いた残りの数のことを(基数の)補数というが、今回の主役は、 それよりも1少ない、いわゆる減基数の補数(注)である。 10進数だと、ぶっちゃけ足して(各桁が)9になる数(の組)だ。 具体例を出すと「9-1=8」だから、8は1の補数である。いうまでもないが、1は8の補数である。 ■まずは「おつり算」 日常生活で最も多い計算は「おつりを計算すること」だろう。 これは補数を使った計算の第一歩にちょうどいい。 速算に 10000-3452=? を計算することは、3452の基数の補数をもとめることだけれど、 まず減基数の補数を求めちゃえばいい。そしてこれは次の方法で反射的にできる。 減基数の補数は基数の補数よりも1だけ少ないということを心に留めておくと、 次の表を覚えておく(というより反射的に出るようにしておく)だけで、 「繰り下がり」なんかに希
仕事でも普段の生活でも、ふとした時に使えると便利なのが「暗算」。いちいち計算機に頼らなくてもパパッと答えが出せれば、時間も有効に使えますよね。そこで今回は、「暗算のテクニック」についてのエントリーを集めました。 ■まるで手品みたい?覚えておきたい暗算テクニック 九九はマスターしていても、2ケタ以上のかけ算になると急にややこしく感じますよね。実は「これで答えが出るの?」という意外な方法もたくさんあります。 「焼肉じゅうじゅう」方式の暗算って? ▽脳若返り! 究極役立ち計算術 : ためしてガッテン - NHK NHKの「ためしてガッテン」で紹介された暗算術がこちら。スーパーでの買い物を予算内に納める時に役立つ「どんぶり勘定」(100円を“1どんぶり”と考え、頭の中でどんぶりの数を足していく方法)や、「じゅういくつ x じゅういくつ」のかけ算に使える「焼肉じゅうじゅう」方式のかけ算などがあります
小学校のころ、私は四則演算が学校で一番速く出来た。そんな私だが、実は九九はほとんど覚えていなかった。 掛け算や割り算を速く行なうのに必要なのは九九じゃないことを私は知っていたからだ。 簡単な例を出そう。あなたは、40÷6をどうやって計算するだろうか? 九九を持ち出してきて、「6×8 = 48 あれ、大きすぎたか。6×7 = 42、ありゃ、まだ大きいか。6×6 = 36。おお、40より小さくなった。40-36 = 4だから、6余り4が答え!」なんてやらないだろうか。これは凄く無駄な作業だ。どう考えてもやり方がおかしい。 ここで必要なのは、九九ではなく、36〜41は、6で割ったら商は6という知識である。「余り」もセットにして覚えてあるとなお良い。 「÷6」をするとき、割られる数が60以上であることは考えなくて良い。また、もう少し一般化して言えば、「÷N」するときは、割られる数がN*10以上であ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く