ご訪問いただいたお客様へのお知らせ アクセスいただいたWebサービスは提供を終了いたしました。 長年にわたり、多くの皆様にご利用いただきましたことを心よりお礼申し上げます。 ODNトップページへ
ご訪問いただいたお客様へのお知らせ アクセスいただいたWebサービスは提供を終了いたしました。 長年にわたり、多くの皆様にご利用いただきましたことを心よりお礼申し上げます。 ODNトップページへ
リーマンのゼータ関数 ζ(s) (s = 1/2 + ix) の実部(赤線)と虚部(青線)。最初の非自明な零点が Im s = x = ±14.135, ±21.022, ±25.011 に現れる。 臨界線(s = 1/2 + ix)上を移動する点の軌跡をゼータ関数によって変換したもの。この軌跡は繰り返し原点を通る曲線になる。 直線の実部を変化させたときゼータ関数が描く軌跡の変化。実部が 1/2 のときに上記と同じく軌跡は繰り返し原点を通る曲線になる。 ミレニアム懸賞問題 数学においてリーマン予想(リーマンよそう、英: Riemann hypothesis, 独: Riemannsche Vermutung、略称:RH)は、リーマンゼータ関数の零点が、負の偶数と、実部が 1/2 の複素数に限られるという予想である。リーマン仮説とも。ドイツの数学者ベルンハルト・リーマン(1859)により提唱
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "思考実験" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2013年2月) 思考実験 (しこうじっけん、英: thought experiment、独: Gedankenexperiment)とは、頭の中で想像するのみの実験[1]。科学の基礎原理に反しない限りで、極度に単純・理想化された前提(例えば摩擦のない運動、収差のないレンズなど)で行われるという想定上の実験[2]。 思考実験という言葉自体は、エルンスト・マッハによって初めて用いられた。 思考実験の例としては、古代ギリシャの「アキレスと亀」やガリレオといった古典から、サンデル講義
友愛数(ゆうあいすう、英: amicable numbers)とは、異なる 2 つの自然数の組で、自分自身を除いた約数の和が互いに他方と等しくなるような数をいう。親和数(しんわすう)とも呼ばれる。 最小の友愛数の組は (220, 284) である。 220 の自分自身を除いた約数は、1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110 で、和は 284 となる。一方、284 の自分自身を除いた約数は、1, 2, 4, 71, 142 で、和は 220 である。 友愛数はピタゴラス学派の時代にはすでに知られていた(ダンブリクス Damblichus)。現在まで知られる友愛数の組は、すべて偶数同士または奇数同士の組である。 (220, 284) の次に求められた友愛数は (17296, 18416) である。この友愛数はそれ以前にも求められていたが、フェルマーにより再
自然数 n に対して、n が奇数なら3かけて1加える。偶数なら2で割る。以上の操作を繰り返すと、全ての自然数に関して、最終的に、1→4→2→1のループに入る。 つまり 1→4→2→1 2→1 3→10→5→16→8→4→2→1 4→2→1 5→16→8→4→2→1 6→3→10→5→16→8→4→2→1 7→22→11→34→17→52→26→13→40→20→10→5→… 8→4→2→1 9→28→14→7→… といった感じです。何となく、いずれ1に帰着し、ループに入りそうな気がしますねえ。 しかし、証明はと言うと、未だ解決されていません。この問題に決着を付けるためには、証明するか、反例を見つけるかどちらかですね。反例はと言うと、 ・充分この操作を続けたあとも、元の数、n 以下になることがない数。 ・1→4→2→1以外のループをつくる数。 のどちらかですね。 未だに解決されていない問題を
パラドックスと呼ばれるものの一般的な構造(左側)、そして解決の基本的な三つのパターン(右側)[1]。図では示されていないが、前提には明示されるものと、そうでないものがある。パラドックスを取り扱う際は、明示されていない前提にも注意を払っていく必要がある。 パラドックス(paradox)とは、正しそうな前提と、妥当に思える推論から、受け入れがたい結論が得られる事を指す言葉である。逆説、背理、逆理とも言われる。 「妥当に思える推論」は狭義には(とりわけ数学分野においては)形式的妥当性をもった推論、つまり演繹のみに限られる。しかし一般的にはより広く帰納などを含んだ様々な推論が利用される。また「受け入れがたい結論」は、「論理的な矛盾」と「直感的には受け入れがたいが、別に矛盾はしていないもの」に分けることができる。狭義には前者の場合のみをパラドックスと言い、広義には後者もパラドックスという。こうした区
先日の記事 誰もがどこかでつまずいた→小学校の算数から大学数学まで126の難所を16種類に分類した 読書猿Classic: between / beyond readers を読んだ人から「やりなおし魂に火をつけるだけつけて放置するのは無責任だ、何をやればいいのか教えろ」という問い合わせがあった。 小学校の算数レベルから微積分など高校+αまで、ついている予備テストをやれば、どの章は飛ばしていいか、どこの章のどの問題を勉強すればよいかを教えてくれる往年の名著(が復刻してた) を紹介しようと思ったが(科学を志さない人にも勧められる)、買い損なった場合と人のために、web上の教材をリストにして、先の記事の補いとする。 (2017.9.6 リンク切れ等、訂正しました) 小学校〜高校 小学校の算数 中学校の数学 高校数学 大学数学基礎 小学校〜高校 小学校「算数科」,中学校・高等学校「数学科」の内容
1:以下、名無しにかわりましてVIPがお送りします:2011/10/02(日) 19:52:58.86 ID:iOTSoPcb0 1=0.99999999999… 3:以下、名無しにかわりましてVIPがお送りします:2011/10/02(日) 19:53:47.41 ID:OhdJ/aUM0 0で除算ができない 4:以下、名無しにかわりましてVIPがお送りします:2011/10/02(日) 19:53:47.93 ID:OPtLu0WF0 0!=1 6: 【0.2m】 :2011/10/02(日) 19:54:47.20 ID:kHGiZfS30 >>4 これなんでなん? 以下、名無しにかわりましてVIPがお送りします:2011/10/02(日) 19:57:04.61 ID:R+8e7k7x0 >>6 2!=3!/3 1!=2!/2 0!=1!/1 14:以下、名無しにかわりましてVI
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く