タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

AlgorithmとalgorithmとWikipediaに関するInoHiroのブックマーク (54)

  • Probabilistic latent semantic analysis - Wikipedia

    Probabilistic latent semantic analysis (PLSA), also known as probabilistic latent semantic indexing (PLSI, especially in information retrieval circles) is a statistical technique for the analysis of two-mode and co-occurrence data. In effect, one can derive a low-dimensional representation of the observed variables in terms of their affinity to certain hidden variables, just as in latent semantic

  • Latent Dirichlet allocation - Wikipedia

    In natural language processing, latent Dirichlet allocation (LDA) is a generative statistical model that explains how a collection of text documents can be described by a set of unobserved "topics." For example, given a set of news articles, LDA might discover that one topic is characterized by words like "president", "government", and "election", while another is characterized by "team", "game",

  • ブロックソート - Wikipedia

    ブロックソート、ブロックソーティング、Burrows-Wheeler変換 (Burrows-Wheeler Transform; BWT) は、1994年にマイケル・バローズ (Michael Burrows) とデビッド・ホイーラー (David Wheeler) が開発した可逆変換の方式で、データ圧縮の前処理に応用される。 ブロックソート自体はデータの大きさを変えない。しかし、データを整列することでデータ中に出現するパターンを、いくつかのよく知られている手法で圧縮し易いものにできる。後処理としてMove To Front (MTF)・連長圧縮 (RLE)・エントロピー符号と組み合わせて、データを圧縮する。 実装はbzip2等。 Python言語による実装例が文献[1]に出ている。 長さ n のデータを巡回シフトし、得られるすべての文字列を辞書順にソートする。このようにしてできた n×n

  • 潜在意味解析 - Wikipedia

    潜在意味解析(せんざいいみかいせき、英: Latent Semantic Analysis、略称: LSA)は、ベクトル空間モデルを利用した自然言語処理の技法の1つで、文書群とそこに含まれる用語群について、それらに関連した概念の集合を生成することで、その関係を分析する技術である。潜在的意味解析とも。 1988年、アメリカ合衆国でLSAの特許が取得されている[1]。情報検索の分野では、潜在的意味索引または潜在意味インデックス(英: Latent Semantic Indexing, LSI)とも呼ばれている。 LSA では、各文書における用語の出現を表した文書-単語マトリクスが使われる。これは各行が各単語に対応し、各列が各文書に対応した疎行列である。この行列の各成分の重み付けには tf-idf (term frequency–inverse document frequency) が用いられ

  • Paxosアルゴリズム - Wikipedia

    Paxosとは信頼性が低いプロセッサのネットワークにおいて合意の問題を解決するためのプロトコルの集合である。 合意とは参加者のグループにおいて単一の結果について合意を得るプロセスである。参加者や通信手法に障害が起きる可能性がある場合、この問題は困難なものとなる[1]。 合意プロトコルは分散コンピューティングにおける状態機械アプローチの基礎であり、これはレスリー・ランポート[2]により提案され、Fred Schneiderによってサーベイがなされている[3]。 Paxosプロトコルは1990年に登場し命名されたが、論文として出版されたのは1998年であった[4]。 これ以前に、ナンシー・リンチ、Cynthia Dwork、Larry Stockmeyerは"部分同期"システムの広い範囲における合意形成方法を例証している。Paxosは分散トランザクションの文脈において、1988年にOkiとBa

  • 線形補間 - Wikipedia

    区分的線形補間の例 区分線形補間の例 2次元の区分線形補間の例 線形補間(せんけいほかん、英: Linear interpolation, lerp)は、多項式補間の特殊なケースで、線形多項式(一次式)を用いた回帰分析の手法である。1次補間としても知られている。 なお、3つ以上のデータに対し線形補間といった場合、1つの線型近似によるフィッティングではなく、区分線形関数を使った区分線形補間(1次スプライン補間、いわゆる折れ線グラフ)のことである。 線形補間は数学の世界(特に数値解析)やコンピュータグラフィックスを含む多くの分野で非常によく使われている。補間の非常に単純な形式であり、これより単純なのは最近傍補間(0次補間)しかない。 座標(x0, y0)と(x1, y1)があるとする。ここで、 [x0, x1]の間にあるxが与えられたときに、この線上にある点を得たいとする。図をよく見ると次のこ

    線形補間 - Wikipedia
  • 二分探索木 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "二分探索木" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2023年3月) 二分探索木 二分探索木(にぶんたんさくぎ、英: binary search tree)は、コンピュータプログラムにおいて、「左の子孫の値 ≤ 親の値 ≤ 右の子孫の値」という制約を持つ二分木である。探索木のうちで最も基的な木構造である。 構造は二分木と同じだが、「左の子孫の値 ≤ 親 ≤ 右の子孫の値」という制約を持つ。左の子孫の値と右の子孫の値の両方に等号をつけているが、実際にはどちらかに統一しておく必要がある。 平衡(左右のバランスがとれている状態)し

    二分探索木 - Wikipedia
  • トライ (データ構造) - Wikipedia

    "A", "to", "tea", "ted", "ten", "i", "in", "inn" というキー群によるトライ木 トライ木(英: trie)やプレフィックス木(英: prefix tree)とは、順序付き木の一種。あるノードの配下の全ノードは、自身に対応する文字列に共通するプレフィックス(接頭部)があり、ルート(根)には空の文字列が対応している。値は一般に全ノードに対応して存在するわけではなく、末端ノードや一部の中間ノードだけがキーに対応した値を格納している。2分探索木と異なり、各ノードに個々のキーが格納されるのではなく、木構造上のノードの位置とキーが対応している。 キーが文字列である連想配列の実装構造としても使われる。右図の例では、ノードを表す丸の中にキーが書かれ、連想される値がその下に書かれている。値が書かれていないノードはキー文字列の途中までにしか対応していない。各英単語

    トライ (データ構造) - Wikipedia
  • 床関数と天井関数 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "床関数と天井関数" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2016年11月) 床関数 天井関数 床関数(ゆかかんすう、英: floor function)と天井関数(てんじょうかんすう、英: ceiling function)は、実数に対してそれぞれ、自身以下の最大、自身以上の最小の整数を出力する関数である。 英語の floor, ceiling といった名称と、, という記法は、プログラミング言語 APL の元となる A Programming Language というの中でケネス・アイバーソンによって1962年に導入され

    床関数と天井関数 - Wikipedia
  • XOR交換アルゴリズム - Wikipedia

    XOR交換(エックスオアこうかん、XOR swap)は、コンピュータ・プログラミングのアルゴリズムの一種であり、排他的論理和(XOR)を使用して一時変数を使わずに同じデータ型のふたつの変数の(異なる)値を交換する操作である。 このアルゴリズムはXORの対称差という性質を利用したものである。すなわち、任意のA, Bについて、(A XOR B) XOR B = A が成立することである。 標準的な交換アルゴリズムでは一時的な格納場所が必要となる。x と y の値を交換する場合、以下のようになる。 y の値を一時格納域にコピーする:temp ← y y に x の値を代入する:y ← x x に一時格納域の値を代入する:x ← temp あるいは、x と y が整数ならば、以下のようなアルゴリズムで交換することができる。 x := x + y y := x - y x := x - y ただし、

  • 最尤推定 - Wikipedia

    最尤推定(さいゆうすいてい、英: maximum likelihood estimationという)や最尤法(さいゆうほう、英: method of maximum likelihood)とは、統計学において、与えられたデータからそれが従う確率分布の母数を点推定する方法である。 この方法はロナルド・フィッシャーが1912年から1922年にかけて開発した。 観測されたデータからそれを生んだ母集団を説明しようとする際に広く用いられる。生物学では塩基やアミノ酸配列のような分子データの置換に関する確率モデルに基づいて系統樹を作成する際に、一番尤もらしくデータを説明する樹形を選択するための有力な方法としても利用される。機械学習ではニューラルネットワーク(特に生成モデル)を学習する際に最尤推定(負の対数尤度最小化として定式化)が用いられる。 最尤推定が解く基的な問題は「パラメータ が不明な確率分布に

  • A* - Wikipedia

    A*探索アルゴリズム A*(A-star、エースター)探索アルゴリズム(エースターたんさくアルゴリズム)は、グラフ探索アルゴリズムの一つ。 最良優先探索を拡張したZ*に、さらにf値として「現時点までの距離」g と「ゴールまでの推定値」h の和を採用したもの[1]。h はヒューリスティック関数と呼ばれる。 A* アルゴリズムは、「グラフ上でスタートからゴールまでの道を見つける」というグラフ探索問題において、ヒューリスティック関数 h(n) という探索の道標となる関数を用いて探索を行うアルゴリズムである。h は各頂点 n からゴールまでの距離のある妥当な推定値を返す関数で、解くグラフ探索問題の種類に応じてさまざまな h を設計することが出来る。例えば、カーナビなどで用いられる単純な二次元の地図での探索では、h としてユークリッド距離 を使うことができ、この値は道に沿った実際の距離のおおまかな予

    A* - Wikipedia
  • 最短経路問題 - Wikipedia

    グラフ理論における最短経路問題(さいたんけいろもんだい、英: shortest path problem)とは、重み付きグラフの与えられた2つのノード間を結ぶ経路の中で、重みが最小の経路を求める最適化問題である。 2頂点対最短経路問題 特定の2つのノード間の最短経路問題。一般的に単一始点最短経路問題のアルゴリズムを使用する。 単一始点最短経路問題 (SSSP:Single Source Shortest Path) 特定の1つのノードから他の全ノードとの間の最短経路問題。この問題を解くアルゴリズムとしては、ダイクストラ法やベルマン-フォード法がよく知られている。 全点対最短経路問題 (APSP : All Pair Shortest Path) グラフ内のあらゆる2ノードの組み合わせについての最短経路問題。この問題を解くアルゴリズムとしては、ワーシャル-フロイド法が知られている。 このよう

  • 接尾辞配列 - Wikipedia

    接尾辞配列(せつびじはいれつ)やサフィックス・アレイ(英: suffix array)とは、文字列の接尾辞(開始位置を異にし終端位置を元の文字列と同じくする部分文字列)の文字列中の開始位置を要素とする配列を、接尾辞に関して辞書順に並べ替えて得られる配列である。接尾辞木の配列版。主に文字列探索、全文検索などに利用される。1990年に Udi Manber と Gene Myers が発表した[1]。