タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

algorithmとnlpとmathに関するMakotsのブックマーク (3)

  • 統計的機械学習入門

    統計的機械学習入門(under construction) 機械学習歴史ppt pdf 歴史以前 人工知能の時代 実用化の時代 導入ppt pdf 情報の変換過程のモデル化 ベイズ統計の意義 識別モデルと生成モデル 次元の呪い 損失関数, bias, variance, noise データの性質 数学のおさらいppt pdf 線形代数学で役立つ公式 確率分布 情報理論の諸概念 (KL-divergenceなど) 線形回帰と識別ppt pdf 線形回帰 正規方程式 正規化項の導入 線形識別 パーセプトロン カーネル法ppt pdf 線形識別の一般化 カーネルの構築法 最大マージン分類器 ソフトマージンの分類器 SVMによる回帰モデル SVM実装上の工夫 クラスタリングppt pdf 距離の定義 階層型クラスタリング K-means モデル推定ppt pdf 潜在変数のあるモデル EMアル

  • 行列分解ライブラリredsvdを公開しました - DO++

    大規模疎行列向けの行列分解ライブラリredsvdを公開しました. redsvd 大規模疎行列向けの特異値分解や主成分分析,固有値分解を行うライブラリredsvdを公開しました. 修正BSDライセンスで公開しており,コマンドラインから使える他,C++ライブラリが用意されています. 例えば,行と列数がそれぞれ10万,非零の要素が1000万からなる疎行列に対する上位20位までの特異値分解を約2秒で処理します. 特異値分解とか,使っている技術の詳細とか応用事例を以下に簡単に紹介しましたので,興味のある方は参考にしてください. 特異値分解とは まず行列を適当に復習します.行列Xの転置をX^tと表すことにします.またIを単位行列とし,Oを全ての成分が0である零行列とします.また,行列XX^t=IであるようなXを直交行列と呼びます.Xが直交行列の時,Xvはベクトルvを長さを変えずに回転させます.ここでは

    行列分解ライブラリredsvdを公開しました - DO++
  • ベイズを学びたい人におすすめのサイト - download_takeshi’s diary

    ベイジアンフィルタとかベイズ理論とかを勉強するにあたって、最初はなんだかよくわからないと思うので、 そんな人にお勧めのサイトを書き残しておきます。 @IT スパム対策の基技術解説(前編)綱引きに蛇口当てゲーム?!楽しく学ぶベイズフィルターの仕組み http://www.atmarkit.co.jp/fsecurity/special/107bayes/bayes01.html いくつかの絵でわかりやすく解説してあります。 自分がしるかぎり、最もわかりやすく親切に解説してる記事です。数学とかさっぱりわからない人はまずここから読み始めるといいでしょう。 茨城大学情報工学科の教授のページから http://jubilo.cis.ibaraki.ac.jp/~isemba/KAKURITU/221.pdf PDFですが、これもわかりやすくまとまってます。 初心者でも理解しやすいし例題がいくつかあ

    ベイズを学びたい人におすすめのサイト - download_takeshi’s diary
  • 1