今回は、ロジスティック回帰です。この方法はPRMLで初めて知りましたが、統計学の方では一般的な方法のようです。回帰という名前がついてますが、実際は分類のためのモデルとのこと。ロジスティック回帰では、クラス1の事後確率が特徴ベクトルの線形関数のロジスティックシグモイド関数として書けることを利用しています。 ここで、σ(a)は式(4.59)のロジスティックシグモイド関数です。 訓練データ集合 {x_n, t_n} (今度は、クラス1のときt_n=0, クラス1のときt_n=1なので注意)からパラメータwを最尤推定で求めます。尤度関数は、 と書けるので、誤差関数(尤度関数の負の対数)は、 となります。誤差関数を最小化するようなwを求めたいってことですね。で、普通だったら今までのようにwで偏微分して0とおいてwを解析的に求めるところですが、yにロジスティックシグモイド関数が入っているせいで解析的に