タグ

ProgrammingとAlgorithmに関するOooのブックマーク (22)

  • Statechart - 増井俊之

    表を使って状態遷移を表現することもできる。transition[][]のような遷移表を作っておき、state = transition[state][input]のように現在の状態と入力から次の状態を計算するようにしておけばプログラムは簡単になる。 正確な遷移表を作ることだけ注意すれば良い。

    Statechart - 増井俊之
  • 動的配列について – JavaのLinkedListとArrayListを分析・比較する | POSTD

    私はSkienaの『Algorithm Design Manual』 (訳注:『アルゴリズム設計マニュアル』 上巻 ・ 下巻 ) を読んでいました。ところでこのは素晴らしいで、連結リストと配列についてこんな比較をしていました(chapter 3.1.3)。 連結リストが静的配列に勝る相対的な長所には以下のものがあります。: • メモリが当にいっぱいにならない限り、連結構造にオーバーフローが生じない。 • 連続的な(配列)リストに比べて、挿入と削除が単純である。 • 大きなレコードを扱う場合、要素自体を動かすよりもポインタを動かすほうが容易かつ高速である。 一方で、配列の相対的な長所には以下のものがあります。 • 連結構造には、ポインタのフィールドを格納するための余計な領域が必要となる。 • 連結リストでは、要素に対する効率的なランダムアクセスができない。 • 配列は、ランダムなポイン

    動的配列について – JavaのLinkedListとArrayListを分析・比較する | POSTD
  • 三目並べで学ぶミニマックス法 | POSTD

    最近、「絶対に勝てない三目並べ」のゲームを作ったのですが、非常にささやかながらも楽しいプロジェクトで、いろいろ学ぶこともできました。ゲームの全体像に興味がある方は、 こちらでゲームを試してみてください 。 無敵のゲームにするには、コンピュータ側が全ての手を計算し、何らかの基準を用いて最善の手を決められるようなアルゴリズムを作る必要があります。多岐にわたって調べた結果、このプロジェクトにはどうやら ミニマックス アルゴリズムが適当そうだということが分かりました。 このアルゴリズムを根的な意味で真に理解し、自分のゲームに実装できるようになるまでにはある程度の時間が必要でした。多くのコードサンプルと説明に目を通しましたが、私が能なしだからか、どれを見てもプロセスの内実を十分に理解することはできなかったのです。この投稿が、ミニマックスアルゴリズムに関する皆さんの理解に少しでもお役に立てたらと思い

    三目並べで学ぶミニマックス法 | POSTD
  • ハクビシンにもわかる全文検索 - Qiita

    高速な全文検索アルゴリズムであるFM-indexについて解説する。理解しがたい点や間違っている点があれば是非コメントで指摘してほしい。 概要 FM-indexはリニアな文字列に対して検索をするアルゴリズムで、主に簡潔データ構造とBWT(およびLF mapping)という二つのアイデアから成り立っている。BWTはBurrows-Wheeler変換のことで、文字列を特殊な並び順に変換するという可逆関数である。BWTされた文字列を簡潔データ構造固有の操作をすることで、クエリ文字列の長さに比例した短い時間で文字列を探し出すのがFM-indexだ。 簡潔データ構造 簡潔データ構造に関してはFM-indexで必要となる二つの関数だけ説明して、詳細は次の機会に譲るとする。さて、二つの関数はともに文字列のある位置より前の部分に含まれている文字の数を数え上げるというものでrank()とrankLessTha

    ハクビシンにもわかる全文検索 - Qiita
  • VisuAlgo moves to https://visualgo.net/en

    Redirecting you to https://visualgo.net/en

  • String repeat のアルゴリズムとパフォーマンス - hogehoge @teramako

    ES6になると、String.prototype.repeatのメソッドが追加されるわけだが、そのアルゴリズムとパフォーマンスを追ってみている。 ES6 String.prototype.repeat の仕様では以下の様な感じでシンプルな書き方をしている。 countが 0 より小さい、または 無限大である場合は RangeError count 0 ならば、空文字列 そうでない場合は、count回、文字列を繰り返して連結する 単純に実装すれば、以下の様な感じで済む。 String.prototype.repeat = function (count) { if (count < 0 || !Number.isFinite(count)) throw new RangeError(); var result = "", str = this; for (var i = 0; i < cou

    String repeat のアルゴリズムとパフォーマンス - hogehoge @teramako
  • いつからFIFOがスケールしないと錯覚していた

    Please select the category that most closely reflects your concern about the presentation, so that we can review it and determine whether it violates our Terms of Use or isn't appropriate for all viewers.

  • SmartNewsを支える機械学習

    ニュースアプリSmartNews(https://www.smartnews.be/)の背景のアルゴリズムについてTokyoWebMining30th(http://tokyowebmining30.eventbrite.com/)で話させていただいた際の資料です。 •SmartNews iphone版: https://itunes.apple.com/jp/app/id579581125 •SmartNews Android版 https://play.google.com/store/apps/details?id=jp.gocro.smartnews.android •SmartNews開発者ブログ http://developer.smartnews.be/blog/Read less

    SmartNewsを支える機械学習
  • 古くて新しい自動迷路生成アルゴリズム - やねうらおブログ(移転しました)

    最近、ゲーム界隈ではプロシージャルテクスチャー生成だとか、プロシージャルマップ生成だとか、手続き的にゲーム上で必要なデータを生成してしまおうというのが流行りであるが、その起源はどこにあるのだろうか。 メガデモでは初期のころから少ないデータでなるべくど派手な演出をするためにプロシージャルな生成は活用されてきたが、ゲームの世界でプロシージャル生成が初めて導入されたのは、もしかするとドルアーガの塔(1984年/ナムコ)の迷路の自動生成かも知れない。 なぜ私が迷路のことを突然思い出したのかと言うと、最近、Twitterで「30年前、父が7年と数ヶ月の歳月をかけて描いたA1サイズの迷路を、誰かゴールさせませんか。」というツイートが話題になっていたからである。 この迷路を見て「ああ、俺様も迷路のことを書かねば!俺様しか知らない(?)自動迷路生成のことを後世に書き残さねば!」と誰も求めちゃいない使命感が

    古くて新しい自動迷路生成アルゴリズム - やねうらおブログ(移転しました)
  • あなたの知らないハッシュテーブルの世界

    Please select the category that most closely reflects your concern about the presentation, so that we can review it and determine whether it violates our Terms of Use or isn't appropriate for all viewers.

  • あらゆる数独パズルを解く

    Peter Norvig / 青木靖 訳 このエッセイでは、 あらゆる数独パズルを解くという問題に取り組む。制約伝播と探索という2つのアイデアを使うと、ごく簡単に解けるということがわかる(主要なアイデアはコードにして1ページたらずで、補足的なコードが2ページある)。 数独の記法と予備概念 最初に記法をいくつか決めておこう。数独パズルは81個のマス(square)からなる盤面を使う。数独ファンの多くはカラムを1-9で、行をA-Iでラベル付けしており、カラム、行、ボックスのような9個のマスの集まりをユニット(unit)と呼び、ユニットを共有するマスをピア(peer)と呼んでいる。パズルではマスのいくつかが空いており、他は数字が入っている。パズルの目的はこうだ。 それぞれのユニットのマスが1から9の数字の順列によって埋められるようにする。 つまり、1つのユニットに同じ数字が2度現れてはならず、そ

  • 最強最速アルゴリズマー養成講座:アルゴリズマーの登竜門、「動的計画法・メモ化再帰」はこんなに簡単だった (1/5) - ITmedia エンタープライズ

    動的計画法とメモ化再帰 今回は、非常によく用いられるアルゴリズムである、「動的計画法」「メモ化再帰」について説明します。この2つはセットで覚えて、両方使えるようにしておくと便利です。 なお、メモ化再帰に関しては、第5・6回の連載の知識を踏まえた上で読んでいただけると、理解が深まります。まだお読みになっていない方は、この機会にぜひご覧ください。 中学受験などを経験された方であれば、こういった問題を一度は解いたことがあるのではないでしょうか。小学校の知識までで解こうとすれば、少し時間は掛かるかもしれませんが、それでもこれが解けないという方は少ないだろうと思います。 この問題をプログラムで解こうとすると、さまざまな解法が存在します。解き方によって計算時間や有効範囲が大きく変化しますので、それぞれのパターンについて考えます。 以下の説明では、縦h、横wとして表記し、プログラムの実行時間に関しては、

    最強最速アルゴリズマー養成講座:アルゴリズマーの登竜門、「動的計画法・メモ化再帰」はこんなに簡単だった (1/5) - ITmedia エンタープライズ
  • Algorithm Ink - AzarAsk

    Using algorithms to solve problems can be a wonderful option when the result must be 100% exact or if each decision must follow the same method. A different method might be required if performance is the most important consideration. Approaching a problem the proper way can often be the key to finding a solution that works. An algorithm is a term used in psychology to describe a few of these probl

  • 一番右端の立っているビット位置を求める「ものすごい」コード - 当面C#と.NETな記録

    一番右端の立っているビット位置(RightMostBit)を求めるコードで速いのないかなーと探していたら、ものっっっすごいコードに出会ってしまったのでご紹介。2ch のビット演算スレで 32bit 値のコードに出会って衝撃を受けて、その後 64bit 値版のヒントを見つけたのでコードを書いてみました。 この問題は ハッカーのたのしみ―物のプログラマはいかにして問題を解くか (Google book search で原著 Hacker's delight が読めたのでそれで済ませた) で number of trailing zeros (ntz) として紹介されています。bit で考えたときに右側に 0 がいくつあるかを数えるもの。1 だと 0、2 だと 1、0x80 なら 7、12 なら 2 といったぐあい。0 のときに表題どおりの問題として考えるといくつを返すの?ってことになるので、

    一番右端の立っているビット位置を求める「ものすごい」コード - 当面C#と.NETな記録
  • ネットワークプログラムのI/O戦略 - sdyuki-devel

    図解求む。 以下「プロトコル処理」と「メッセージ処理」を分けて扱っているが、この差が顕著に出るのは全文検索エンジンや非同期ジョブサーバーなど、小さなメッセージで重い処理をするタイプ。ストリーム指向のプロトコルの場合は「プロトコル処理」を「ストリーム処理」に置き換えるといいかもしれない。 シングルスレッド・イベント駆動 コネクションN:スレッド1。epoll/kqueue/select を1つ使ってイベントループを作る。 マルチコアCPUでスケールしないので、サーバーでは今時このモデルは流行らない。 クライアントで非同期なメッセージングをやりたい場合はこのモデルを使える: サーバーにメッセージを送信 イベントハンドラを登録;このときイベントハンドラのポインタを取っておく イベントハンドラ->フラグ がONになるまでイベントループを回す イベントハンドラ->結果 を返す 1コネクション1スレッ

    ネットワークプログラムのI/O戦略 - sdyuki-devel
  • 1時間でわからせたコンシステントハッシュで仮想ノードが必要な理由 - 西尾泰和のはてなダイアリー

    ConsistentHashing - コンシステント・ハッシュ法 とあるチャットで聞かれて図まで書いて解説したのでもったいないからエントリー化。ちなみにチャットが1時間弱だったのでこういうタイトルにした。 で、Bが消えるとBの責任範囲が全部Dに押し付けられてDがかわいそうでしょ。 Dの仕事が増えるでしょ。Cとか暇そうじゃん!サーバを複数用意しているメリットが薄れてる。みんなが同じくらい働くのが望ましい。 で、Bが1個の点で表現されているから「Bの手前」もDの1個だけで、そのせいで全部Dが引き受けるはめになった。つまり、仕事が細かく分割されてなくて1個の塊だから引き継ぐ人も1人だけで引き継いだ人涙目。あらかじめ仕事を100分割しとけばみんなで分担して肩代わりできて幸せだよね。 だからサーバが5個だけど点は5個じゃなくて500個打とう。それが仮想ノード。 実装はどうするの?という質問に対して

    1時間でわからせたコンシステントハッシュで仮想ノードが必要な理由 - 西尾泰和のはてなダイアリー
  • シムシティーの仕組み

    シムシティーを作り始めていちばん最初に考えたのは、街を一種の生き物のように表現できないかってことだった。 僕が街についてどう考えているかはすでに説明したけど、大事なのは街を構成する建物とか道路じゃなくって、そこでどんな活動が行なわれているかってことだと思うんだ。道路を車が走り、電車が動き、人々が動き回り、常に要素が変化し続ける“動きのある”システム。街を表現する方法っていうと誰でも地図を思い浮かべると思うけど、僕は動きがない地図じゃなくって、たとえば飛行機から眺めた街、動きのある世界をディスプレイに表現しようって考えた。それこそが僕の考える街の姿だからね。 それともう一つ考えたことは、プレイヤーに伝える情報をできるだけわかりやすく、それも“面白い”って思えるような形で表現しようってことだった。シミュレーション・ソフトっていうとたいてい数値や図表がたくさん出てくるけれど、数字が並んでいるのを

  • おとうさん、ぼくにもYコンビネータがわかりましたよ! - 2009-04-09 - きしだのはてな

    やっと、Yコンビネータが何を意味するものなのか、どういう意義があるのかがわかりました。 名前を使わず再帰ができますよ!というだけのものじゃなかったのですね。 まずλありき 関数の話をしたいのです。 そのとき、いちいち hoge(x) = x * 2 としてhogeを・・・、とか名前をつけて話を進めるのがめんどうなので、関数を値としてあらわすと便利ということで、λという値を定義するのです。 そうすると、上のhoge関数なんかはλ(x)(x*2)などとあらわせますが、引数をあらわすのに()を使うといろいろまぎらわしいので、 λx.x*2 のように表記します。 というのがλ。 このとき、λになにかわたされたら、引数としてあらわされる部分を単純におきかえます。 (λx.x*2)y とあったら、xの部分をyでおきかえて (λx.x*2)y → y * 2 となります。λの引数部分を与えられた引数で置

    おとうさん、ぼくにもYコンビネータがわかりましたよ! - 2009-04-09 - きしだのはてな
  • クラスタリングの定番アルゴリズム「K-means法」をビジュアライズしてみた - てっく煮ブログ

    集合知プログラミング を読んでいたら、K-means 法(K平均法)の説明が出てきました。K-means 法はクラスタリングを行うための定番のアルゴリズムらしいです。存在は知っていたんだけどいまいちピンときていなかったので、動作を理解するためにサンプルを作ってみました。クリックすると1ステップずつ動かすことができます。クラスタの数や点の数を変更して、RESET を押すと好きなパラメータで試すことができます。こうやって1ステップずつ確認しながら動かしてみると、意外に単純な仕組みなのが実感できました。K-means 法とはK平均法 - Wikipedia に詳しく書いてあるけど、もうすこしザックリと書くとこんなイメージになります。各点にランダムにクラスタを割り当てるクラスタの重心を計算する。点のクラスタを、一番近い重心のクラスタに変更する変化がなければ終了。変化がある限りは 2. に戻る。これ

  • scale out の技術 〜 consistent hashing 編 (cloud 研究会, December 19, 2008)

    scale out の技術 〜 consistent hashing 編 首藤 一幸 2008年 12月 19日 cloud 研究会 (丸山不二夫氏主宰) スライド: shudo-cloud-scaleout-20081219.pdf (PDF ファイル, 840 KB) 関連資料: オーバレイによる分散キャッシュ: ウェブページ (21 pages, HTML) Unstructured overlay と Sturectured overlay: ウェブページ (34 pages, HTML) Back to Publications のページ 首藤のページ scale out の方策